Free Access Week-  Data Engineering + BI
Data engineering and BI courses are free!
Free AI Access Week from June 2-8

RandomFields (version 3.0.10)

RMbiwm: Full Bivariate Whittle Matern Model

Description

RMbiwm is a bivariate stationary isotropic covariance model whose corresponding covariance function only depends on the distance $r \ge 0$ between two points and is given for $i,j \in {1,2}$ by Cij(r)=cijWνij(r/sij). Here $W_\nu$ is the covariance of the RMwhittle model. For constraints on the constants see details.

Usage

RMbiwm(nudiag, nured12, nu, s, cdiag, rhored, c, notinvnu, var,
 scale, Aniso, proj)

Arguments

nudiag
a vector of length 2 of numerical values; each entry positive; the vector $(\nu_{11},\nu_{22})$
nured12
a numerical value in the interval $[1,\infty)$; $\nu_{21}$ is calculated as $0.5 (\nu_{11} + \nu_{22})*\nu_{red}$.
nu
alternative to nudiag and nured12: a vector of length 3 of numerical values; each entry positive; the vector $(\nu_{11},\nu_{21},\nu_{22})$. Either nured and nudiag, or nu must be given.
s
a vector of length 3 of numerical values; each entry positive; the vector $(s_{11},s_{21},s_{22})$
cdiag
a vector of length 2 of numerical values; each entry positive; the vector $(c_{11},c_{22})$
rhored
a numerical value; in the interval $[-1,1]$. See also the Details for the corresponding value of $c_{12}=c_{21}$.
c
a vector of length 3 of numerical values; the vector $(c_{11},c_{21}, c_{22})$. Either rhored and cdiag or c must be given.
notinvnu
logical or NULL. If not given (default) then the formula of the (RMwhittle) model applies. If logical then the formula for the RMmatern
var,scale,Aniso,proj
optional parameters; same meaning for any RMmodel. If not passed, the above covariance function remains unmodified.

Value

Details

Constraints on the constants: For the diagonal elements we have νii,sii,cii>0. For the offdiagonal elements we have s12=s21>0, ν12=ν21=0.5(ν11+ν22)νred for some constant $\nu_{red} \in [1,\infty)$ and c12=c21=ρredfmc11c22 for some constant $\rho_{red}$ in $[-1,1]$. The constants $f$ and $m$ in the last equation are given as follows: f=(Γ(ν11+d/2)Γ(ν22+d/2))/(Γ(ν11)Γ(ν22))(Γ(ν12)/Γ(ν12+d/2))2(s122ν12/(s11ν11s22ν22))2 where $\Gamma$ is the Gamma function and $d$ is the dimension of the space. The constant $m$ is the infimum of the function $g$ on $[0,\infty)$ where g(t)=(1/s122+t2)2ν12+d(1/s112+t2)ν11d/2(1/s222+t2)ν22d/2 (cf. Gneiting, T., Kleiber, W., Schlather, M. (2010), Full Bivariate Matern Model (Section 2.2))

References

  • Gneiting, T., Kleiber, W., Schlather, M. (2010) Matern covariance functions for multivariate random fieldsJASA

See Also

RMparswm, RMwhittle, RMmodel, RFsimulate, RFfit.

Examples

Run this code
RFoptions(seed=0)
x <- y <- seq(-10, 10, if (interactive()) 0.2 else 5)
model <- RMbiwm(nudiag=c(1, 2), nured=1, rhored=1, cdiag=c(1, 5), 
                s=c(1, 1, 2))
simu <- RFsimulate(model, x, y, grid=TRUE)
plot(simu)
RFoptions(seed=NA)

Run the code above in your browser using DataLab