Aniso
in ratio
or diag
, and an In two dimensions and with
angle
equal to $a$ and diag
equal to $(d1, d2)$ the
anisotropy matrix $A$ is
A = diag(d1, d2) %*% matrix(ncol=2, c(cos(a), sin(a),
-sin(a), cos(a)))
In three dimensions and with
angle
equal to $a$, second angle $L$
and diag
equal to $(d1, d2, d3)$ the
anisotropy matrix $A$ is
A = diag(d1, d2, d3) %*% matrix(ncol=3,
c(cos(a) * cos(L), sin(a) * cos(L), sin(L),
-sin(a), cos(a), 0,
-cos(a) * sin(L), -sin(a) * sin(L), cos(L)
))
i.e. $Ax$ turns a vector x first in $x-z$ plane, then
in the $x-y$ plane.
RMangle(angle, lat.angle, ratio, diag)
a
diag=c(1, 1/ratio)
; in 2 dimensions onlyRFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
model <- RMexp(Aniso=RMangle(angle=pi/4, ratio=3))
plot(model, dim=2)
x <- seq(0, 2, if (interactive()) 0.05 else 1)
z <- RFsimulate(x, x, model=model)
plot(z)
model <- RMexp(Aniso=RMangle(angle=pi/4, lat.angle=pi/8, diag=c(1,2,3)))
x <- seq(0, 2, if (interactive()) 0.2 else 1)
z <- RFsimulate(x, x, x, model=model)
plot(z, MARGIN.slices=3)
FinalizeExample()
Run the code above in your browser using DataLab