Free Access Week - Data Engineering + BI
Data Engineering and BI courses are free this week!
Free Access Week - Jun 2-8

RandomFields (version 3.0.5)

RMlgd: Local-Global Distinguisher Family Covariance Model

Description

RMlgd is a stationary isotropic covariance model, which is valid only for dimensions $d =1,2$. The corresponding covariance function only depends on the distance $r \ge 0$ between two points and is given by C(r)=1β1(α+β)rα1[0,1](r)+α1(α+β)rβ1r>1(r) where $\beta >0$ and $0 < \alpha \le (3-d)/2$, with $d$ denoting the dimension of the random field.

Usage

RMlgd(alpha, beta, var, scale, Aniso, proj)

Arguments

alpha
parameter whose range is dependend on the dimension of the random field: $0< \alpha \le (3-d)/2$.
beta
beta > 0.
var,scale,Aniso,proj
optional parameters; same meaning for any RMmodel. If not passed, the above covariance function remains unmodified.

Value

Details

The model is only valid for dimension $d=1,2$.

This model admits simulating random fields where RFfractaldimension D of the Gaussian sample and Hurst coefficient H can be chosen independently (compare also RMgencauchy.):

Here, the random field has RFfractaldimension D=d+1α/2 and Hurst coefficient H=1β/2 for $0< \beta \le 1$.

References

  • Gneiting, T. and Schlather, M. (2004) Stochastic models which separate RFfractaldimension and Hurst effect.SIAM review46, 269--282.

See Also

RMmodel, RFsimulate, RFfit.

Examples

Run this code
set.seed(0)
model <- RMlgd(alpha=0.7, beta=4, scale=0.5)
x <- seq(0, 10, if (interactive()) 0.02 else 1) 
plot(model, ylim=c(0,1))
plot(RFsimulate(model, x=x))

Run the code above in your browser using DataLab