
Last chance! 50% off unlimited learning
Sale ends in
RFinterpolate(model, x, y = NULL, z = NULL, T = NULL, grid=NULL,
distances, dim, data, given=NULL, err.model, method =
"ml", ...)
RFgetModelNames(type="variogram")
to get all options.GridTopology
or
raster
;
coordinates of $n$ points tT
must always be an equidistant vector.
Instead of T=seq(from=From, by=By, len=Len)
one may also write
T=c(From, By, Len)
.x
,
y
, and z
should be
interpreted as a grid definition; RandomFields
can
find itself the correct value in nearly all cases.
See also distances
are given.given
is not given
and data
is a matrix or data
is
a given
matrix then the coordinates
can be given separately, namely by given
where, in each row,
a single location is given.
If given
is a
list, it may consist of x
err.model=RMnugget(var=var)
, or not given at all
(error-free measurements).methods
or
sub.methods
,
see variance.return
,
see variance.return=FALSE
(default), Kriging
returns a
vector or matrix of kriged values corresponding to the
specification of x
, y
, z
, and
grid
, and data
.
data
: a vector or matrix with one column
* grid=FALSE
. A vector of simulated values is
returned (independent of the dimension of the random field)
* grid=TRUE
. An array of the dimension of the
random field is returned (according to the specification
of x
, y
, and z
).
data
: a matrix with at least two columns
* grid=FALSE
. A matrix with the ncol(data)
columns
is returned.
* grid=TRUE
. An array of dimension
$d+1$, where $d$ is the dimension of
the random field, is returned (according to the specification
of x
, y
, and z
). The last
dimension contains the realisations. If variance.return=TRUE
, a list of two elements, estim
and
var
, i.e. the kriged field and the kriging variances,
is returned. The format of estim
is the same as described
above. The format of var
is accordingly.
Cressie, N.A.C. (1993) Statistics for Spatial Data. New York: Wiley. Goovaerts, P. (1997) Geostatistics for Natural Resources Evaluation. New York: Oxford University Press. Ver Hoef, J.M. and Cressie, N.A.C. (1993) Multivariate Spatial Prediction. Mathematical Geology 25(2), 219-240. Wackernagel, H. (1998) Multivariate Geostatistics. Berlin: Springer, 2nd edition.
RandomFields
,RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
## Preparation of graphics
if (interactive()) dev.new(height=7, width=16)
RFoptions(always_close_screen=FALSE)
## creating random variables first
## here, a grid is chosen, but does not matter
p <- 3:8
points <- as.matrix(expand.grid(p,p))
model <- RMexp() + RMtrend(mean=1)
data <- RFsimulate(model, x=points)
plot(data)
x <- seq(0, 9, 0.25)
## Simple kriging with the exponential covariance model
model <- RMexp()
z <- RFinterpolate(model, x=x, y=x, data=data)
plot(z, data)
## Simple kriging with mean=4 and scaled covariance
model <- RMexp(scale=2) + RMtrend(mean=4)
z <- RFinterpolate(model, x=x, y=x, data=data)
plot(z, data)
## Ordinary kriging
model <- RMexp() + RMtrend(mean=NA)
z <- RFinterpolate(model, x=x, y=x, data=data)
plot(z, data)
\dontrun{
## alternatively
## Intrinsic kriging
model <- RMfbm(a=1)
z <- RFinterpolate(krige.meth="U", model, x, x, data=data)
screen(scr <- scr+1); plot(z, data)
## Interpolation nicht korrekt
## Intrinsic kriging with Polynomial Trend
model <- RMfbm(a=1) + RMtrend(polydeg=2)
z <- RFinterpolate(model, x, x, data=data)
screen(scr <- scr+1); plot(z, data)
}
\dontrun{
## Universal kriging with trend as formula
model <- RMexp() + RMtrend(arbit=function(X1,X2) sin(X1+X2)) +
RMtrend(mean=1)
z <- RFinterpolate(model, x=x, y=x, data=data)
screen(scr <- scr+1); plot(z, data)
## Universal kriging with several arbitrary functions
model <- RMexp() + RMtrend(arbit=function(x,y) x^2 + y^2) +
RMtrend(arbit=function(x,y) (x^2 + y^2)^0.5) + RMtrend(mean=1)
z <- RFinterpolate(model, x=x, y=x, data=data)
screen(scr <- scr+1); plot(z, data)
}close.screen(all = TRUE)
RFoptions(always_close_screen=TRUE);
close.screen(all.screens=TRUE);
while (length(dev.list()) >= 2) dev.off()
FinalizeExample()
Run the code above in your browser using DataLab