
RMmult(C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, var, scale, Aniso, proj)
*
-operator, e.g.: C0 * C1 The global arguments scale,Aniso,proj
of RMmult(Aniso=A1, RMexp(Aniso=A2), RMspheric(Aniso=A3))
equals
RMexp(Aniso=A2 %*% A1), RMspheric(Aniso=A3 %*% A1)
In case that all submodels are given through a covariance function,
the global argument var
of
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
# separable, multiplicative model
model <- RMgauss(proj=1) * RMexp(proj=2, scale=5)
z <- RFsimulate(model=model, 0:10, 0:10, n=4)
plot(z)
FinalizeExample()
Run the code above in your browser using DataLab