
Last chance! 50% off unlimited learning
Sale ends in
plot
in package RandomFieldsRFsp
), explicit covariance models
(objects of class RMmodel
),
empirical variograms (objects of class
RFempVariog
) and fitted models
(objects of class RFfit
).
The plot methods not described here are described together with the
class itself, for instance,
RFfit
,
RFempVariog
RMmodel
.
RFplotSimulation(x, y, MARGIN=c(1,2), MARGIN.slices=NULL, n.slices = if (is.null(MARGIN.slices)) 1 else 10, nmax=6, plot.variance = !is.null(x@.RFparams$has.variance) && x@.RFparams$has.variance, select.variables, zlim, legend=TRUE, MARGIN.movie = NULL, file=NULL, speed = 0.3, height.pixel=300, width.pixel=height.pixel, ..., plotmethod="image")
RFplotSimulation1D(x, y, nmax=6, plot.variance=!is.null(x@.RFparams$has.variance) && x@.RFparams$has.variance, legend=TRUE, ...)
"plot"(x, y, ...)
"plot"(x, y, ...)
"plot"(x, y, ...)
"plot"(x, y, ...)
"plot"(x, y, ...)
"plot"(x, y, ...)
"plot"(x, y, ...)
"plot"(x, y, ...)
"plot"(x, y, ...)
"plot"(x, y, ...)
"plot"(x, y, ...)
"plot"(x, y, ...)
"plot"(x, y, ...)
"plot"(x, y, ...)
"plot"(x, y, ...)
"plot"(x, y, ...)
"plot"(x, y, ...)
"plot"(x, y, ...)
"plot"(x, y, ...)
"plot"(x, y, ...)
"persp"(x, ..., zlab="")
"contour"(x, ...)
MARGIN.slices
can specify a third dimension w.r.t. which a
sequence of slices is plotted. Currently only works for grids.n.slices>1
, nmax
is set to 1. Or n.slices
is a
vector of 3 elements: start, end, length. Currently only works for grids.x@.RFparams$n
iid copies
of the field that are to be plottedMARGIN.movie
and file
is given an 'avi' movie
is stored using the mencoder
command with speed argument
speed
. As temporary files file__###.png
of size width.pixel
x height.pixel
are created.
'RMmodel'
,
see Details.
length(select.variables)
gives the number of pictures shown
(excuding the plot for the variances, if applicable).
If select.variables
is a vector of integers then exactly these
components are shown. If select.variables
is a list, each element
should be a vector up to length $l <= 3$:=""
zlim
can also be a character
wih the value ‘joint’ indicating that all plotted compoments shall
have the same zlim OR a matrix with two rows, where the i-th column
gives the zlim of the i-th variable OR a list with entries named
data
and var
if a separate zlim
for the Kriging variance is to
be used.persp
signature(x = "RFspatialGridDataFrame", y =
"missing")
.RFparams$vdim>1
) as well as
repeated iid simulations (.RFparams$vdim>n
).signature(x = "RFspatialGridDataFrame", y =
"RFspatialPointsDataFrame")
y="missing"
, but additionally adds the
points of y
. Requires MARGIN.slices=NULL
and
all.equal(x@.RFparams, y@.RFparams)
.signature(x = "RFspatialGridDataFrame", y =
"matrix")
y="missing"
, but additionally adds the
points of y
. Requires MARGIN.slices=NULL
and
all.equal(x@.RFparams, y@.RFparams)
.signature(x = "RFspatialPointsDataFrame", y =
"RFspatialGridDataFrame")
x
and y
have been interchanged.signature(x = "RFspatialPointsDataFrame", y =
"missing")
RFspatialGridDataFrame
, but for non-gridded simulation results.
Instead of a grid, only existing points are plotted with colors indicating
the value of the random field at the respective location. Handles
multivariate random fields (.RFparams$vdim>1
) as well as
repeated iid simulations (.RFparams$vdim>n
).signature(x = "RFspatialPointsDataFrame", y =
"RFspatialPointsDataFrame")
y="missing"
, but additionally adds the
points of y
. Requires
all.equal(x@.RFparams, y@.RFparams)
.signature(x = "RFgridDataFrame", y = "missing")
signature(x = "RFpointsDataFrame", y = "missing")
RFgridDataFrame
, but for non-gridded data....
are passed to image
and
plot.default
, respectively; if, by default, multiple colors,
xlabs or ylabs are used, also vectors of suitable length can be
passed as col
, xlab
and ylab
, respectively. One exception is the use of ...
in plot
for class
'RMmodel'
.
Here, further models might be passed. All models must have names
starting with model
. If '.'
is following in the name,
the part of the name after the dot is shown in the legend. Otherwise
the name is ignored and a standardized name derived from the model
definition is shown in the legend. Note that for the first argument
a name cannot be specified.
RFpar
.
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
## define the model:
model <- RMtrend(mean=0.5) + # mean
RMstable(alpha=1, var=4, scale=10) + # see help("RMstable")
## for additional arguments
RMnugget(var=1) # nugget
#############################################################
## Plot of covariance structure
plot(model)
plot(model, xlim=c(0, 30))
plot(model, xlim=c(0, 30), fct.type="Variogram")
plot(model, xlim=c(-10, 20), fct.type="Variogram", dim=2)
image(model, xlim=c(-10, 20), fct.type="Variogram")
persp(model, xlim=c(-10, 20), fct.type="Variogram")
#############################################################
## Plot of simulation results
## define the locations:
from <- 0
step <- .1
len <- 50 # nicer if len=100 %ok
x1D <- GridTopology(from, step, len)
x2D <- GridTopology(rep(from, 2), rep(step, 2), rep(len, 2))
x3D <- GridTopology(rep(from, 3), rep(step, 3), rep(len, 3))
## 1-dimensional
sim1D <- RFsimulate(model = model, x=x1D, n=6)
plot(sim1D, nmax=4)
## 2-dimensional
sim2D <- RFsimulate(model = model, x=x2D, n=6)
plot(sim2D, nmax=4)
plot(sim2D, nmax=4, col=terrain.colors(64),
main="My simulation", xlab="my_xlab")
## 3-dimensional
model <- RMmatern(nu=1.5, var=4, scale=2)
sim3D <- RFsimulate(model = model, x=x3D)
plot(sim3D, MARGIN=c(2,3), MARGIN.slices=1, n.slices=4)
#############################################################
## empirical variogram plots
x <- seq(0, 10, 0.05)
bin <- seq(from=0, by=.2, to=3)
model <- RMexp()
X <- RFsimulate(x=cbind(x), model=model)
ev1 <- RFempiricalvariogram(data=X, bin=bin)
plot(ev1)
model <- RMexp(Aniso = cbind(c(10,0), c(0,1)))
X <- RFsimulate(x=cbind(x,x), model=model)
ev2 <- RFempiricalvariogram(data=X, bin=bin, phi=3)
plot(ev2, model=list(exp = model))
#############################################################
## plot Fitting results
x <- seq(0, 1, len=21)
model <- RMexp(Aniso = cbind(c(10,0), c(0,1)))
X <- RFsimulate(x=cbind(x,x), model=model)
fit <- RFfit(~RMexp(Aniso=diag(c(NA, NA))), data=X, fit.nphi = 2,
modus="easygoing")
plot(fit)
#############################################################
## plot Kriging results
model <- RMwhittle(nu=1.2, scale=2)
n <- 200
x <- runif(n, max=step*len/2)
y <- runif(n, max=step*len/2) # 200 points in 2 dimensional space
sim <- RFsimulate(model = model, x=x, y=y)
interpolate <- RFinterpolate(model=model, x=x2D, data=sim)
plot(interpolate)
plot(interpolate, sim)
#############################################################
## plotting vector-valued results
model <- RMdivfree(RMgauss(), scale=4)
x <- y <- seq(-10,10, 0.5)
simulated <- RFsimulate(model = model, x=x, y=y, n=1)
plot(simulated)
plot(simulated, select.variables=list(1, 1:3, 4))
#############################################################
## options for the zlim argument
model <- RMdelay(RMstable(alpha=1.9, scale=2), s=c(0, 4)) +
RMdelay(RMstable(alpha=1.9, scale=2), s=c(4, 0))
simu <- RFsimulate(model, x, y)
plot(simu, zlim=list(data=cbind(c(-6,2), c(-2,1)), var=c(5,6)))
plot(simu, zlim=cbind(c(-6,2), c(-2,1)))
plot(simu, zlim=c(-6,2))
plot(simu, zlim="joint")
Run the code above in your browser using DataLab