
RFboxcox(data, boxcox, vdim = 1, inverse=FALSE, ignore.na=FALSE)
boxcox
should be a $2 \times
m$ matrix.FALSE
an error message is returned
if any value of boxcox
is NA
. Otherwise the data are
returned without being transformed.Y
, X
, vdim
returning
the deterministic trend, the design matrix, and the multivariability,
respectively.
If set
is positive, Y
and X
contain
the values for the set
-th set of coordinates.
Else, Y
and X
are both lists containing
the values for all the sets.boxcox
can be set
globally through If the first value of the transformation is Inf
no
transformation is performed (and is identical to boxcox = c(1,
0)
).
If boxcox
has length 1, then the transformation parameters
$\mu$ is set to $0$, which is the standard case.
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
StartExample()
data(soil)
str(soil)
soil <- RFspatialPointsDataFrame(
coords = soil[ , c("x.coord", "y.coord")],
data = soil[ , c("moisture", "NO3.N", "Total.N", "NH4.N", "DOC", "N20N")],
RFparams=list(vdim=6, n=1)
)
data <- soil["moisture"]
if (RFoptions()$internal$examples_red) {
warning("data have been reduced !")
All <- 1:7
data(soil)
soil <- RFspatialPointsDataFrame(
coords = soil[All, c("x.coord", "y.coord")],
data = soil[All, c("moisture", "NO3.N", "Total.N",
"NH4.N", "DOC", "N20N")],
RFparams=list(vdim=6, n=1)
)
data <- soil["moisture"]
}
model <- ~1 + RMplus(RMwhittle(scale=NA, var=NA, nu=NA), RMnugget(var=NA))
## Assuming log-Gaussian Data
print(fit <- RFfit(model, data=data, loggaus=TRUE))
## main Parameter in the Box Cox transformation to be estimated
print(fit <- RFfit(model, data=data, boxcox=NA))
FinalizeExample()
Run the code above in your browser using DataLab