Join us for
RADAR: AI Edition

RandomFields (version 3.1.8)

RMstp: Single temporal process

Description

RMstp is a univariate covariance model which depends on a normal mixture submodel $\phi$. The covariance is given by C(x,y)=|Sx|1/4|Sy|1/4|A|1/2ϕ(Q(x,y)1/2) where Q(x,y)=c2m2+ht(Sx+2(m+c)M)A1(Sy+2(mc)M)h, c=zth+ξ2(x)ξ2(y), A=Sx+Sy+4MhhtM m=htMh h=xy

Usage

RMstp(xi, phi, S, z, M, var, scale, Aniso, proj)

Arguments

xi
arbitrary univariate function on $R^d$
phi
an RMmodel that is a normal mixture model, cf. RFgetModelNames(monotone="normal mixture")
S
functions that returns strictly positive definite $d\times d$
z
arbitrary vector, $z \in R^d$
M
an arbitrary, symmetric $d \times d$ matrix
var,scale,Aniso,proj
optional arguments; same meaning for any RMmodel. If not passed, the above covariance function remains unmodified.

Value

Details

See Schlather (2008) formula (13). The model allows for mimicking cyclonic behaviour.

References

  • Paciorek C.J., and Schervish, M.J. (2006) Spatial modelling using a new class of nonstationary covariance functions,Environmetrics17, 483-506.
  • Schlather, M. (2010) Some covariance models based on normal scale mixtures.Bernoulli,16, 780-797.

See Also

RMmodel, RFsimulate, RFfit.

Examples

Run this code
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again
StartExample()
model <- RMstp(xi = RMrotat(phi= -2 * pi, speed=1),
               phi = RMwhittle(nu = 1),
               M=matrix(nc=3, rep(0, 9)),
               S=RMetaxxa(E=rep(1, 3), alpha = -2 * pi,
                          A=t(matrix(nc=3, c(2, 0, 0, 1, 1 , 0, 0, 0, 0))))
              )
x <- seq(0, 10, 0.7)
plot(RFsimulate(model, x=x, y=x, z=x))
FinalizeExample()

Run the code above in your browser using DataLab