# Input rarity weights
data(spid.occ)
# Example of a single scale dataset
regional.occ <- spid.occ$occurMA
names(regional.occ) <- rownames(spid.occ)
head(regional.occ)
# Preparation of rarity weights
rarity.weights <- rWeights(regional.occ)
# Generation of an assemblage matrix
assemblages.matrix <- cbind(assemblage.1 = sample(c(0, 1), 50, replace = TRUE),
assemblage.2 = sample(c(0, 1), 50, replace = TRUE),
assemblage.3 = sample(c(0, 1), 50, replace = TRUE),
assemblage.4 = sample(c(0, 1), 50, replace = TRUE),
assemblage.5 = sample(c(0, 1), 50, replace = TRUE))
# Random attribution of names to the sampled species
rownames(assemblages.matrix) <- sample(names(regional.occ), 50, replace = FALSE)
head(assemblages.matrix)
# Calculation of Irr
Irr(assemblages.matrix, rarity.weights)
# Example of a multi scale dataset
rarity.weights <- rWeights(spid.occ, extended = TRUE)
head(rarity.weights)
# Generation of an assemblage matrix
assemblages.matrix <- cbind(assemblage.1 = sample(c(0, 1), 50, replace = TRUE),
assemblage.2 = sample(c(0, 1), 50, replace = TRUE),
assemblage.3 = sample(c(0, 1), 50, replace = TRUE),
assemblage.4 = sample(c(0, 1), 50, replace = TRUE),
assemblage.5 = sample(c(0, 1), 50, replace = TRUE))
rownames(assemblages.matrix) <- sample(names(regional.occ), 50, replace = FALSE)
head(assemblages.matrix)
# Calculation of Irr
Irr(assemblages.matrix, rarity.weights)
Run the code above in your browser using DataLab