if (FALSE) {
# Regression example:
nRow <- 5000
x <- data.frame(replicate(6, rnorm(nRow)))
y <- with(x, X1^2 + sin(X2) + X3 * X4) # courtesy of S. Welling.
rb <- Rborist(x,y)
# Performs separate prediction on new data:
xx <- data.frame(replace(6, rnorm(nRow)))
pred <- predict(rb, xx)
yPred <- pred$yPred
# Performs separate prediction, using original response as test
# vector:
pred <- predict(rb, xx, y)
mse <- pred$mse
rsq <- pred$rsq
# Performs separate prediction with (default) quantiles:
pred <- predict(rb, xx, quantiles="TRUE")
qPred <- pred$qPred
# Performs separate prediction with deciles:
pred <- predict(rb, xx, quantVec = seq(0.1, 1.0, by = 0.10))
qPred <- pred$qPred
# Classification examples:
data(iris)
rb <- Rborist(iris[-5], iris[5])
# Generic prediction using training set.
# Census as (default) votes:
pred <- predict(rb, iris[-5])
yPred <- pred$yPred
census <- pred$census
# As above, but validation census to report class probabilities:
pred <- predict(rb, iris[-5], ctgCensus="prob")
prob <- pred$prob
# As above, but with training reponse as test vector:
pred <- predict(rb, iris[-5], iris[5], ctgCensus = "prob")
prob <- pred$prob
conf <- pred$confusion
misPred <- pred$misPred
}
Run the code above in your browser using DataLab