# NOT RUN {
data(csu_registry_data_1)
data(csu_registry_data_2)
# you can import your data from csv file using read.csv:
# mydata <- read.csv("mydata.csv", sep=",")
# Age standardized rate (ASR) with no missing age cases.
result <- csu_asr(csu_registry_data_1,
"age", "cases", "py",
group_by = c("registry", "registry_label" ),
var_age_group = c("registry_label"))
# you can export your result as csv file using write.csv:
# write.csv(result, file="result.csv")
# ASR, with the percentage of correction due to missing age cases.
result <- csu_asr(csu_registry_data_1,
"age", "cases", "py",
group_by = c("registry", "registry_label" ),
var_age_group = c("registry_label"),
missing_age = 19,
correction_info = TRUE)
# ASR and standard error with missing age.
result <- csu_asr(csu_registry_data_2,
"age", "cases", "py",
group_by = c("registry", "registry_label", "sex", "year", "ethnic" ),
var_age_group = c("registry_label"),
var_st_err = "st_err",
missing_age = 99)
# Truncated ASR, 25-69 years.
result <- csu_asr(csu_registry_data_2,
"age", "cases", "py",
group_by = c("registry", "registry_label", "sex", "year", "ethnic" ),
var_age_group = c("registry_label"),
var_st_err = "st_err",
first_age = 6,
last_age = 14,
missing_age = 99)
# Truncated ASR, 0-15 with denominator population = 1000000.
result <- csu_asr(csu_registry_data_2,
"age", "cases", "py",
group_by = c("registry", "registry_label", "sex", "year", "ethnic" ),
var_age_group = c("registry_label"),
var_st_err = "st_err",
first_age = 1,
last_age = 3,
missing_age = 99,
db_rate = 1000000)
# ASR with EURO population as reference (instead of SEGI)
result <- csu_asr(csu_registry_data_1,
"age", "cases", "py",
group_by = c("registry", "registry_label" ),
var_age_group = c("registry_label"),
missing_age = 19,
pop_base = "EURO")
# }
Run the code above in your browser using DataLab