data(csu_registry_data_1)
data(csu_registry_data_2)
# you can import your data from csv file using read.csv:
# mydata <- read.csv("mydata.csv", sep=",")
# to select only 1 population.
test <- subset(csu_registry_data_1 , registry_label == "Colombia, Cali")
# plot age specific rate for 1 population.
csu_ageSpecific(test,
plot_title = "Colombia, Liver, male")
# plot age specific rate for 1 population, and comparison with CI5XII data.
csu_ageSpecific(test,
plot_title = "Colombia, Liver, male",
CI5_comparison = "Liver")
# plot age specific rate for 4 population,
# legend at the bottom and comparison with CI5XII data using cancer code.
csu_ageSpecific(
csu_registry_data_1,
group_by="registry_label",
legend=csu_trend_legend(position="bottom", nrow = 1),
plot_title = "Liver, male",
CI5_comparison = 16
)
# \donttest{
# plot age specific rate for 4 population, legend at the right.
csu_ageSpecific(
csu_registry_data_1,
group_by="registry_label",
legend=csu_trend_legend(
position="right", right_space_margin = 6.5
),
plot_title = "Liver, male")
# Plot embedded in a graphic device
pdf(paste0(tempdir(),"/test.pdf"),width = 11.692 , height = 8.267)
csu_ageSpecific(
csu_registry_data_1,
group_by="registry_label",
legend=csu_trend_legend(position="bottom", nrow = 2),
plot_title = "Liver, male",
CI5_comparison = 16)
plot.new()
csu_ageSpecific(
csu_registry_data_1,
group_by="registry_label",
legend=csu_trend_legend(
position="right", right_space_margin = 6.5
),
plot_title = "Liver, male")
dev.off()
# }
Run the code above in your browser using DataLab