library(Rcan)
data("csu_CI5XII_data")
#get the id_code asssociate to id_label
#print(unique(csu_CI5XII_data[,c("id_label", "id_code")]),nrows = 1000)
#get the cancer code asssociate to cancer_label
#print(unique(csu_CI5XII_data[,c("cancer_label", "cancer_code")]),nrows = 1000)
#remove all cancers:
df_data <- subset(csu_CI5XII_data ,cancer_code < 62)
df_data$sex <- factor(df_data$sex, levels=c(1,2), labels=c("Male", "Female"))
#select Thailand changmai
df_data_1 <- subset(df_data, id_code==476400199)
# plot for Thailand Changmai
dt_result_1 <-
csu_ageSpecific_top(df_data_1,
var_age="age",
var_cases="cases",
var_py="py",
var_top="cancer_label",
group_by="sex",
plot_title= "Thailand, Chiangmai",
plot_subtitle = "Top 5 cancer",
missing_age = 19)
# \donttest{
#select USAm NPCR
df_data_2 <- subset(df_data,id_code== 384008099)
# plot for USA NPCR
dt_result_2 <-
csu_ageSpecific_top(
df_data_2,
var_age="age",
var_cases="cases",
var_py="py",
var_top="cancer_label",
group_by="sex",
plot_title= "USA",
plot_subtitle = "Top 5 cancer",
missing_age = 19
)
# }
Run the code above in your browser using DataLab