library(Rcan)
data("csu_CI5XII_data")
#get the id_code asssociate to id_label
#print(unique(csu_CI5XII_data[,c("id_label", "id_code")]),nrows = 1000)
#get the cancer code asssociate to cancer_label
#print(unique(csu_CI5XII_data[,c("cancer_label", "cancer_code")]),nrows = 1000)
#remove all cancers:
df_data <- subset(csu_CI5XII_data ,cancer_code < 62)
df_data$sex <- factor(df_data$sex, levels=c(1,2), labels=c("Male", "Female"))
#select Thailand changmai
df_data_1 <- subset(df_data, id_code==476400199)
# plot for Thailand Changmai
dt_result_1 <- 
	csu_ageSpecific_top(df_data_1,
		var_age="age", 
		var_cases="cases", 
		var_py="py",
		var_top="cancer_label", 
		group_by="sex", 
		plot_title= "Thailand, Chiangmai",
		plot_subtitle = "Top 5 cancer",
		missing_age = 19)
# \donttest{
	#select USAm NPCR
	df_data_2 <- subset(df_data,id_code== 384008099)
	# plot for USA NPCR
	dt_result_2 <- 
		csu_ageSpecific_top(
			df_data_2,
			var_age="age", 
			var_cases="cases", 
			var_py="py",
			var_top="cancer_label", 
			group_by="sex", 
			plot_title= "USA",
			plot_subtitle = "Top 5 cancer",
			missing_age = 19
			)
# }
	
Run the code above in your browser using DataLab