data(csu_registry_data_1)
data(csu_registry_data_2)
# you can import your data from csv file using read.csv:
# mydata <- read.csv("mydata.csv", sep=",")
# Cumulative risk, 0-74 years, with no missing age cases.
result <- csu_cumrisk(csu_registry_data_1,
"age", "cases", "py",
group_by = c("registry", "registry_label" ))
# you can export your result as csv file using write.csv:
# write.csv(result, file="result.csv")
# Cumulative risk, 0-74 years, with the percentage of correction due to missing age cases.
result <- csu_cumrisk(csu_registry_data_1,
"age", "cases", "py",
group_by = c("registry", "registry_label" ),
missing_age = 19,
correction_info = TRUE)
# Cumulative risk 0-74 years and standard error with missing age.
result <- csu_cumrisk(csu_registry_data_2,
"age", "cases", "py",
group_by = c("registry", "registry_label", "sex", "year", "ethnic" ),
var_st_err = "st_err",
missing_age = 99)
# Cumulative risk, 0-69 years.
result <- csu_cumrisk(csu_registry_data_2,
"age", "cases", "py",
group_by = c("registry", "registry_label", "sex", "year", "ethnic" ),
var_st_err = "st_err",
last_age = 14,
missing_age = 99)
Run the code above in your browser using DataLab