data(csu_registry_data_2)
	# you can import your data from csv file using read.csv:
	# mydata <-  read.csv("mydata.csv", sep=",")
	# to select only 1 population 
	test <- subset(csu_registry_data_2 , registry_label == "Colombia, Cali")
	# to change sex variable to factor with label
	test$sex <- factor(test$sex, levels=c(1,2), labels=c("Male", "Female"))
	# to calculate the asr
	df_asr <- csu_asr(
		test,missing_age = 99,
		group_by  = c("registry", "registry_label", "year", "sex", "ethnic"),
		var_age_group =  c("registry", "registry_label")
		)
	# plot ASR ove year, by sex.
	csu_time_trend(df_asr, group_by="sex",
			  plot_title = "Colombia, Liver")
	# plot ASR over year, by sex, with small smoothing.
	csu_time_trend(df_asr, group_by="sex",
			  plot_title = "Colombia, Liver",
			  smoothing = 0.3)
# \donttest{
	# plot ASR over year, by sex, with high smoothing.
	csu_time_trend(df_asr, group_by="sex",
			  plot_title = "Colombia, Liver",
			  smoothing = 0.5)
	# Plot embedded in a graphic device
	pdf(paste0(tempdir(),"/test.pdf"),width = 11.692 , height =  8.267) 
	csu_time_trend(df_asr, group_by="sex",
			  plot_title = "Colombia, Liver",
			  smoothing = 0.3)
	csu_time_trend(df_asr, group_by="sex",
			  plot_title = "Colombia, Liver",
			  smoothing = 0.5)
	dev.off()
# }			
Run the code above in your browser using DataLab