Learn R Programming

RclusTool (version 0.91)

analyzePlot: Plot for data exploration/analysis

Description

Create some specific plots for data exploration/analysis.

Usage

analyzePlot(nb, data.sample, selectedVar, type = "boxplot",
  hscale = 1.2, K.max = 20)

Arguments

nb

notebook in which the analyze plot will be added.

data.sample

list containing features, profiles and clustering results.

selectedVar

character vector containing the selected variables names to analyze.

type

character vector specifying the analysis type. Must be 'boxplot', 'gapSE', 'histo', 'pcaCorr' or 'pcaVar'.

hscale

numeric value corresponding to the horizontal scale of graphic.

K.max

maximal number of clusters (K.Max=20 by default).

Details

analyzePlot creates specific plot for data exploration/analysis.

Examples

Run this code
# NOT RUN {
dat <- rbind(matrix(rnorm(100, mean = 2, sd = 0.3), ncol = 2), 
             matrix(rnorm(100, mean = 4, sd = 0.3), ncol = 2), 
             matrix(rnorm(100, mean = 6, sd = 0.3), ncol = 2))
colnames(dat) <- c("x","y")
tf <- tempfile()
write.table(dat, tf, sep=",", dec=".")

x <- importSample(file.features=tf, dir.save=tempdir())

mainWindow <- tktoplevel()
tktitle(mainWindow) <- "Barplot clustering"  
mainWindow$env$nb <- tk2notebook(mainWindow, tabs = c())
tkpack(mainWindow$env$nb, fill="both", expand= TRUE)

analyzePlot(mainWindow$env$nb, x, selectedVar="x", type="boxplot")
 

# }

Run the code above in your browser using DataLab