Learn R Programming

RclusTool (version 0.91)

clusterSummary: Clusters summaries computation

Description

Save clusters summaries results in a csv file.

Usage

clusterSummary(data.sample, label,
  features.to.keep = colnames(data.sample$features[["preprocessed"]]$x),
  summary.functions = c(Min = "min", Max = "max", Sum = "sum", Average =
  "mean", SD = "sd"))

Arguments

data.sample

list containing features, profiles and clustering results.

label

vector of labels.

features.to.keep

vector of features names on which the summaries are computed.

summary.functions

vector of functions names for the summaries computation. Could be 'Min', 'Max', 'Sum', 'Average', 'sd'.

Value

out data.frame containing the clusters summaries.

Details

clusterSummary computes the clusters summaries (min, max, sum, average, sd) from a clustering result.

Examples

Run this code
# NOT RUN {
dat <- rbind(matrix(rnorm(100, mean = 0, sd = 0.3), ncol = 2), 
             matrix(rnorm(100, mean = 2, sd = 0.3), ncol = 2), 
             matrix(rnorm(100, mean = 4, sd = 0.3), ncol = 2))
tf1 <- tempfile()
write.table(dat, tf1, sep=",", dec=".")

x <- importSample(file.features=tf1, dir.save=tempdir())
res <- KmeansQuick(x$features$initial$x, K=3)
labels <- formatLabelSample(res$cluster, x)
cluster.summary <- clusterSummary(x, labels)


# }

Run the code above in your browser using DataLab