Learn R Programming

Rcpi (version 1.8.0)

extractProtMoreauBroto: Normalized Moreau-Broto Autocorrelation Descriptor

Description

Normalized Moreau-Broto Autocorrelation Descriptor

Usage

extractProtMoreauBroto(x, props = c("CIDH920105", "BHAR880101", "CHAM820101", "CHAM820102", "CHOC760101", "BIGC670101", "CHAM810101", "DAYM780201"), nlag = 30L, customprops = NULL)

Arguments

x
A character vector, as the input protein sequence.
props
A character vector, specifying the Accession Number of the target properties. 8 properties are used by default, as listed below:
AccNo. CIDH920105
Normalized average hydrophobicity scales (Cid et al., 1992)

AccNo. BHAR880101
Average flexibility indices (Bhaskaran-Ponnuswamy, 1988)

AccNo. CHAM820101
Polarizability parameter (Charton-Charton, 1982)

AccNo. CHAM820102
Free energy of solution in water, kcal/mole (Charton-Charton, 1982)

AccNo. CHOC760101
Residue accessible surface area in tripeptide (Chothia, 1976)

AccNo. BIGC670101
Residue volume (Bigelow, 1967)

AccNo. CHAM810101
Steric parameter (Charton, 1981)

AccNo. DAYM780201
Relative mutability (Dayhoff et al., 1978b)

nlag
Maximum value of the lag parameter. Default is 30.
customprops
A n x 21 named data frame contains n customize property. Each row contains one property. The column order for different amino acid types is 'AccNo', 'A', 'R', 'N', 'D', 'C', 'E', 'Q', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V', and the columns should also be exactly named like this. The AccNo column contains the properties' names. Then users should explicitly specify these properties with these names in the argument props. See the examples below for a demonstration. The default value for customprops is NULL.

Value

A length nlag named vector

Details

This function calculates the normalized Moreau-Broto autocorrelation descriptor (Dim: length(props) * nlag).

References

AAindex: Amino acid index database. http://www.genome.ad.jp/dbget/aaindex.html

Feng, Z.P. and Zhang, C.T. (2000) Prediction of membrane protein types based on the hydrophobic index of amino acids. Journal of Protein Chemistry, 19, 269-275.

Horne, D.S. (1988) Prediction of protein helix content from an autocorrelation analysis of sequence hydrophobicities. Biopolymers, 27, 451-477.

Sokal, R.R. and Thomson, B.A. (2006) Population structure inferred by local spatial autocorrelation: an Usage from an Amerindian tribal population. American Journal of Physical Anthropology, 129, 121-131.

See Also

See extractProtMoran and extractProtGeary for Moran autocorrelation descriptors and Geary autocorrelation descriptors.

Examples

Run this code
x = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[1]]
extractProtMoreauBroto(x)

myprops = data.frame(AccNo = c("MyProp1", "MyProp2", "MyProp3"),
                     A = c(0.62,  -0.5, 15),  R = c(-2.53,   3, 101),
                     N = c(-0.78,  0.2, 58),  D = c(-0.9,    3, 59),
                     C = c(0.29,    -1, 47),  E = c(-0.74,   3, 73),
                     Q = c(-0.85,  0.2, 72),  G = c(0.48,    0, 1),
                     H = c(-0.4,  -0.5, 82),  I = c(1.38, -1.8, 57),
                     L = c(1.06,  -1.8, 57),  K = c(-1.5,    3, 73),
                     M = c(0.64,  -1.3, 75),  F = c(1.19, -2.5, 91),
                     P = c(0.12,     0, 42),  S = c(-0.18, 0.3, 31),
                     T = c(-0.05, -0.4, 45),  W = c(0.81, -3.4, 130),
                     Y = c(0.26,  -2.3, 107), V = c(1.08, -1.5, 43))

# Use 4 properties in the AAindex database, and 3 cutomized properties
extractProtMoreauBroto(x, customprops = myprops,
                       props = c('CIDH920105', 'BHAR880101',
                                 'CHAM820101', 'CHAM820102',
                                 'MyProp1', 'MyProp2', 'MyProp3'))

Run the code above in your browser using DataLab