Learn R Programming

⚠️There's a newer version (2.9.3) of this package.Take me there.

RcppAlgos

A collection of high performance functions and iterators implemented in C++ for solving problems in combinatorics and computational mathematics.

Featured Functions

  • {combo|permute}General: Generate all combinations/permutations of a vector (including multisets) meeting specific criteria.
  • {partitions|compositions}General: Efficient algorithms for partitioning numbers under various constraints
  • {combo|permute|partitions|compositions}Sample: Generate reproducible random samples
  • {combo|permute|partitions|compositions}Iter: Flexible iterators allow for bidirectional iteration as well as random access.
  • primeSieve: Fast prime number generator
  • primeCount: Prime counting function using Legendre's formula

The primeSieve function and the primeCount function are both based off of the excellent work by Kim Walisch. The respective repos can be found here: kimwalisch/primesieve; kimwalisch/primecount

Additionally, many of the sieving functions make use of the fast integer division library libdivide by ridiculousfish.

Benchmarks

Installation

install.packages("RcppAlgos")

## install the development version
devtools::install_github("jwood000/RcppAlgos")

Basic Usage

Combinatorics

## Find all 3-tuples combinations of 1:4
comboGeneral(4, 3)
#>      [,1] [,2] [,3]
#> [1,]   1    2    3
#> [2,]   1    2    4
#> [3,]   1    3    4
#> [4,]   2    3    4


## Alternatively, iterate over combinations
a = comboIter(4, 3)
a@nextIter()
#> [1] 1 2 3

a@back()
#> [1] 2 3 4

a[[2]]
#> [1] 1 2 4


## Pass any atomic type vector
permuteGeneral(letters, 3, upper = 4)
#>      [,1] [,2] [,3]
#> [1,] "a"  "b"  "c"
#> [2,] "a"  "b"  "d"
#> [3,] "a"  "b"  "e"
#> [4,] "a"  "b"  "f"


## Flexible partitioning algorithms
partitionsGeneral(0:5, 3, freqs = rep(1:2, 3), target = 6)
#>      [,1] [,2] [,3]
#> [1,]    0    1    5
#> [2,]    0    2    4
#> [3,]    0    3    3
#> [4,]    1    1    4
#> [5,]    1    2    3


## And compositions
compositionsGeneral(0:3, repetition = TRUE)
#>      [,1] [,2] [,3]
#> [1,]    0    0    3
#> [2,]    0    1    2
#> [3,]    0    2    1
#> [4,]    1    1    1


## Generate a reproducible sample
comboSample(10, 8, TRUE, n = 5, seed = 84)
#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
#> [1,]    3    3    3    6    6   10   10   10
#> [2,]    1    3    3    4    4    7    9   10
#> [3,]    3    7    7    7    9   10   10   10
#> [4,]    3    3    3    9   10   10   10   10
#> [5,]    1    2    2    3    3    4    4    7


## Get combinations such that the product is between
## 3600 and 4000 (including 3600 but not 4000)
comboGeneral(5, 7, TRUE, constraintFun = "prod",
             comparisonFun = c(">=","<"),
             limitConstraints = c(3600, 4000),
             keepResults = TRUE)
#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
#> [1,]    1    2    3    5    5    5    5 3750
#> [2,]    1    3    3    4    4    5    5 3600
#> [3,]    1    3    4    4    4    4    5 3840
#> [4,]    2    2    3    3    4    5    5 3600
#> [5,]    2    2    3    4    4    4    5 3840
#> [6,]    3    3    3    3    3    3    5 3645
#> [7,]    3    3    3    3    3    4    4 3888


## We can even iterate over constrained cases. These are
## great when we don't know how many results there are upfront.
## Save on memory and still at the speed of C++!!
p = permuteIter(5, 7, TRUE, constraintFun = "prod",
                comparisonFun = c(">=","<"),
                limitConstraints = c(3600, 4000),
                keepResults = TRUE)

## Get the next n results
t <- p@nextNIter(1048)

## N.B. keepResults = TRUE adds the 8th column
tail(t)
#>         [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
#> [1043,]    5    4    4    3    4    1    4 3840
#> [1044,]    5    4    4    3    4    4    1 3840
#> [1045,]    5    4    4    4    1    3    4 3840
#> [1046,]    5    4    4    4    1    4    3 3840
#> [1047,]    5    4    4    4    3    1    4 3840
#> [1048,]    5    4    4    4    3    4    1 3840

## Continue iterating from where we left off
p@nextIter()
#> [1]    5    4    4    4    4    1    3 3840

p@nextIter()
#> [1]    5    4    4    4    4    3    1 3840

p@nextIter()
#> [1]    2    2    3    3    4    5    5 3600

## N.B. totalResults and totalRemaining are NA because there is no
## closed form solution for determining this.
p@summary()
#> $description
#> [1] "Permutations with repetition of 5 choose 7 where the prod is between 3600 and 4000"
#> 
#> $currentIndex
#> [1] 1051
#> 
#> $totalResults
#> [1] NA
#> 
#> $totalRemaining
#> [1] NA

Computational Mathematics

## Generate prime numbers
primeSieve(50)
#> [1]  2  3  5  7 11 13 17 19 23 29 31 37 41 43 47

## Many of the functions can produce results in
## parallel for even greater performance
p = primeSieve(1e15, 1e15 + 1e8, nThreads = 4)

head(p)
#> [1] 1000000000000037 1000000000000091 1000000000000159
#> [4] 1000000000000187 1000000000000223 1000000000000241
tail(p)
#> [1] 1000000099999847 1000000099999867 1000000099999907
#> [4] 1000000099999919 1000000099999931 1000000099999963


## Count prime numbers less than n
primeCount(1e10)
#> [1] 455052511

## Get the prime factorization
set.seed(24028)
primeFactorize(sample(1e15, 3), namedList = TRUE)
#> $`701030825091514`
#> [1]             2           149 2352452433193
#> 
#> $`83054168594779`
#> [1]  3098071 26808349
#> 
#> $`397803024735610`
#> [1]            2            5           13           13 235386405169

Further Reading

Why RcppAlgos but no Rcpp?

Previous versions of RcppAlgos relied on Rcpp to ease the burden of exposing C++ to R. While the current version of RcppAlgos does not utilize Rcpp, it would not be possible without the myriad of excellent contributions to Rcpp.

Contact

If you would like to report a bug, have a question, or have suggestions for possible improvements, please file an issue.

Copy Link

Version

Install

install.packages('RcppAlgos')

Monthly Downloads

1,143

Version

2.8.5

License

GPL (>= 2)

Issues

Pull Requests

Stars

Forks

Maintainer

Joseph Wood

Last Published

October 11th, 2024

Functions in RcppAlgos (2.8.5)

RcppAlgos-package

High Performance Tools for Combinatorics and Computational Mathematics
Constraints-class

S4-class for Exposing C++ Constraints Class
Partitions-class

S4-class for Exposing C++ Partitions Class
comboGrid

Efficient Version of expand.grid Where order Does Not Matter
comboGroups

Partition a Vector into Groups
Combo-class

S4-classes for Exposing C++ Combinatorial Classes
ComboGroups-class

S4-class for Exposing C++ ComboGroups Class
isPrimeRcpp

Vectorized Primality Test
numDivisorSieve

Apply Divisor Function to Every Element in a Range
comboRank

Rank Combinations and Permutations
comboSample

Sample Combinations and Permutations
comboGroupsCount

Number of Partitions of a Vector into Groups
comboGroupsIter

comboGroups Iterator
partitionsSample

Sample Partitions/Compositions
primeSieve

Generate Prime Numbers
primeCount

Prime Counting Function \(\pi(x)\)
comboGeneral

Generate Combinations and Permutations of a Vector with/without Constraints
comboIter

Combination and Permutation Iterator
stdThreadMax

Max Number of Concurrent Threads
divisorsSieve

Generate Complete Factorization for Numbers in a Range
partitionsCount

Number of Partitions/Compositions
partitionsGeneral

Generate Partitions/Compositions
eulerPhiSieve

Apply Euler's Phi Function to Every Element in a Range
comboGroupsSample

Sample Partitions of a Vector into Groups
divisorsRcpp

Vectorized Factorization (Complete)
primeFactorize

Vectorized Prime Factorization
primeFactorizeSieve

Generate Prime Factorization for Numbers in a Range
partitionsIter

Partition/Composition Iterator
partitionsRank

Rank Partitions/Compositions
comboCount

Number of combinations/permutations