# NOT RUN {
## Values for a hidden Markov model with categorical observations
set.seed(1000)
newModel <- initHMM(2,4)
A <- matrix(c(0.378286,0.621714,
0.830970,0.169030),
nrow = 2,
byrow = TRUE)
B <- matrix(c(0.1930795, 0.2753869, 0.3463100, 0.1852237,
0.2871577, 0.1848870, 0.1614925, 0.3664628),
nrow = 2,
byrow = TRUE)
Pi <- c(0.4757797, 0.5242203)
newModel <- setParameters(newModel,
list( "A" = A,
"B" = B,
"Pi" = Pi) )
## Values for a hidden Markov model with continuous observations
set.seed(1000)
n <- 3
newModel <- initGHMM(n)
A <- matrix(c(0.5, 0.3, 0.2,
0.2, 0.6, 0.2,
0.1, 0.3, 0.6),
ncol= n, byrow=TRUE)
B <- matrix(c(0,100, # First Gaussian with mean 0 and standard deviation 100
500,300, # Second Gaussian with mean 500 and standard deviation 300
1000,200), # Third Gaussian with mean 1000 and standard deviation 200
nrow=n, byrow=TRUE)
Pi <- rep(1/n, n)
newModel <- setParameters(newModel,
list( "A" = A,
"B" = B,
"Pi" = Pi) )
## Values for a hidden Markov model with discrete observations
set.seed(1000)
n <- 3
newModel <- initPHMM(n)
A <- matrix(c(0.5, 0.3,0.2,
0.2, 0.6, 0.2,
0.1, 0.3, 0.6),
ncol=n, byrow=TRUE)
B <- c(2600, # First distribution with mean 2600
2700, # Second distribution with mean 2700
2800) # Third distribution with mean 2800
Pi <- rep(1/n , n)
newModel <- setParameters(newModel,
list( "A" = A,
"B" = B,
"Pi" = Pi) )
# }
Run the code above in your browser using DataLab