# NOT RUN {
## generate swiss roll with auxiliary dimensions
## it follows reference example from LSIR paper.
n = 123
theta = runif(n)
h = runif(n)
t = (1+2*theta)*(3*pi/2)
X = array(0,c(n,10))
X[,1] = t*cos(t)
X[,2] = 21*h
X[,3] = t*sin(t)
X[,4:10] = matrix(runif(7*n), nrow=n)
## corresponding response vector
y = sin(5*pi*theta)+(runif(n)*sqrt(0.1))
## try different regularization parameters
out1 = do.enet(X, y, lambda1=0.1, lambda2=0.1)
out2 = do.enet(X, y, lambda1=1, lambda2=0.1)
out3 = do.enet(X, y, lambda1=10, lambda2=0.1)
out4 = do.enet(X, y, lambda1=0.1, lambda2=1)
out5 = do.enet(X, y, lambda1=1, lambda2=1)
out6 = do.enet(X, y, lambda1=10, lambda2=1)
out7 = do.enet(X, y, lambda1=0.1, lambda2=10)
out8 = do.enet(X, y, lambda1=1, lambda2=10)
out9 = do.enet(X, y, lambda1=10, lambda2=10)
## visualize
## ( , ) denotes two regularization parameters
par(mfrow=c(3,3))
plot(out1$Y[,1], out1$Y[,2], main="ENET::(0.1,0.1)")
plot(out2$Y[,1], out2$Y[,2], main="ENET::(1, 0.1)")
plot(out3$Y[,1], out3$Y[,2], main="ENET::(10, 0.1)")
plot(out4$Y[,1], out4$Y[,2], main="ENET::(0.1,1)")
plot(out5$Y[,1], out5$Y[,2], main="ENET::(1, 1)")
plot(out6$Y[,1], out6$Y[,2], main="ENET::(10, 1)")
plot(out7$Y[,1], out7$Y[,2], main="ENET::(0.1,10)")
plot(out8$Y[,1], out8$Y[,2], main="ENET::(1, 10)")
plot(out9$Y[,1], out9$Y[,2], main="ENET::(10, 10)")
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab