Maximum Variance Projection (MVP) is a supervised method based on linear discriminant analysis (LDA).
In addition to classical LDA, it further aims at preserving local information by capturing
the local geometry of the manifold via the following proximity coding,
do.mvp(
X,
label,
ndim = 2,
preprocess = c("center", "scale", "cscale", "decorrelate", "whiten")
)
an
a length-
an integer-valued target dimension.
an additional option for preprocessing the data.
Default is "center". See also aux.preprocess
for more details.
a named list containing
an
a list containing information for out-of-sample prediction.
a
zhang_maximum_2007Rdimtools
# NOT RUN {
## use iris data
data(iris)
set.seed(100)
subid = sample(1:150, 50)
X = as.matrix(iris[subid,1:4])
label = as.factor(iris[subid,5])
## perform MVP with different preprocessings
out1 = do.mvp(X, label)
out2 = do.mvp(X, label, preprocess="decorrelate")
out3 = do.mvp(X, label, preprocess="whiten")
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, col=label, pch=19, main="centering")
plot(out2$Y, col=label, pch=19, main="decorrelating")
plot(out3$Y, col=label, pch=19, main="whitening")
par(opar)
# }
Run the code above in your browser using DataLab