Supervised Laplacian Eigenmaps (SPLAPEIG) is a supervised variant of Laplacian Eigenmaps.
Instead of setting up explicit neighborhood, it utilizes an adaptive threshold strategy
to define neighbors for both within- and between-class neighborhood. It then builds affinity
matrices for each information and solves generalized eigenvalue problem. This algorithm
may be quite sensitive in the choice of beta
value.
do.splapeig(
X,
label,
ndim = 2,
preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"),
beta = 1,
gamma = 0.5
)
an
a length-
an integer-valued target dimension.
an additional option for preprocessing the data.
Default is "null". See also aux.preprocess
for more details.
bandwidth parameter for heat kernel in
a balancing parameter in
a named list containing
an
a list containing information for out-of-sample prediction.
raducanu_supervised_2012Rdimtools
# NOT RUN {
## load iris data
data(iris)
X = as.matrix(iris[,1:4])
label = as.factor(iris[,5])
## try different balancing parameters with beta=50
out1 = do.splapeig(X, label, beta=50, gamma=0.3); Y1=out1$Y
out2 = do.splapeig(X, label, beta=50, gamma=0.6); Y2=out2$Y
out3 = do.splapeig(X, label, beta=50, gamma=0.9); Y3=out3$Y
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(Y1, pch=19, col=label, main="gamma=0.3")
plot(Y2, pch=19, col=label, main="gamma=0.6")
plot(Y3, pch=19, col=label, main="gamma=0.9")
par(opar)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab