Locally Principal Component Analysis (LPCA) is an unsupervised linear dimension reduction method. It focuses on the information brought by local neighborhood structure and seeks the corresponding structure, which may contain useful information for revealing discriminative information of the data.
do.lpca2006(
X,
ndim = 2,
type = c("proportion", 0.1),
preprocess = c("center", "scale", "cscale", "decorrelate", "whiten")
)
a named list containing
an
a list containing information for out-of-sample prediction.
a
an
an integer-valued target dimension.
a vector of neighborhood graph construction. Following types are supported;
c("knn",k)
, c("enn",radius)
, and c("proportion",ratio)
.
Default is c("proportion",0.1)
, connecting about 1/10 of nearest data points
among all data points. See also aux.graphnbd
for more details.
an additional option for preprocessing the data.
Default is "center". See also aux.preprocess
for more details.
Kisung You
yang_locally_2006Rdimtools
# \donttest{
## use iris dataset
data(iris)
set.seed(100)
subid = sample(1:150,100)
X = as.matrix(iris[subid,1:4])
lab = as.factor(iris[subid,5])
## try different neighborhood size
out1 <- do.lpca2006(X, ndim=2, type=c("proportion",0.25))
out2 <- do.lpca2006(X, ndim=2, type=c("proportion",0.50))
out3 <- do.lpca2006(X, ndim=2, type=c("proportion",0.75))
## Visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, pch=19, col=lab, main="LPCA2006::25% connected")
plot(out2$Y, pch=19, col=lab, main="LPCA2006::50% connected")
plot(out3$Y, pch=19, col=lab, main="LPCA2006::75% connected")
par(opar)
# }
Run the code above in your browser using DataLab