Marginal Fisher Analysis (MFA) is a supervised linear dimension reduction method. The intrinsic graph characterizes the intraclass compactness and connects each data point with its neighboring pionts of the same class, while the penalty graph connects the marginal points and characterizes the interclass separability.
do.mfa(
X,
label,
ndim = 2,
preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"),
k1 = max(ceiling(nrow(X)/10), 2),
k2 = max(ceiling(nrow(X)/10), 2)
)
a named list containing
an
a list containing information for out-of-sample prediction.
a
an
a length-
an integer-valued target dimension.
an additional option for preprocessing the data.
Default is "center". See also aux.preprocess
for more details.
the number of same-class neighboring points (homogeneous neighbors).
the number of different-class neighboring points (heterogeneous neighbors).
Kisung You
yan_graph_2007Rdimtools
## generate data of 3 types with clear difference
dt1 = aux.gensamples(n=20)-100
dt2 = aux.gensamples(n=20)
dt3 = aux.gensamples(n=20)+100
## merge the data and create a label correspondingly
X = rbind(dt1,dt2,dt3)
label = rep(1:3, each=20)
## try different numbers for neighborhood size
out1 = do.mfa(X, label, k1=5, k2=5)
out2 = do.mfa(X, label, k1=10,k2=10)
out3 = do.mfa(X, label, k1=25,k2=25)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, main="MFA::nbd size=5")
plot(out2$Y, main="MFA::nbd size=10")
plot(out3$Y, main="MFA::nbd size=25")
par(opar)
Run the code above in your browser using DataLab