Learn R Programming

Rdistance (version 4.3.0)

Density and Abundance from Distance-Sampling Surveys

Description

Distance-sampling () is a field survey and analytical method that estimates density and abundance of survey targets (e.g., animals) when detection probability declines with observation distance. Distance-sampling is popular in ecology, especially when survey targets are observed from aerial platforms (e.g., airplane or drone), surface vessels (e.g., boat or truck), or along walking transects. Analysis involves fitting smooth (parametric) curves to histograms of observation distances and using those functions to adjust density estimates for missed targets. Routines included here fit curves to observation distance histograms, estimate effective sampling area, density of targets in surveyed areas, and the abundance of targets in a surrounding study area. Confidence interval estimation uses built-in bootstrap resampling. Help files are extensive and have been vetted by multiple authors. Many tutorials are available on the package's website (URL below).

Copy Link

Version

Install

install.packages('Rdistance')

Monthly Downloads

520

Version

4.3.0

License

GNU General Public License

Maintainer

Trent McDonald

Last Published

January 10th, 2026

Functions in Rdistance (4.3.0)

distances

Observation distances
dfuncEstimErrMessage

dfuncEstim error messages
effectiveDistance

Effective sampling distances
coef.dfunc

Coefficients of an estimated detection function
differentiableLikelihoods

Differentiable likelihoods in Rdistance
cosine.expansion

Cosine expansion terms
colorize

Add color to result if terminal accepts it
dfuncEstim

Estimate a distance-based detection function
dE.single

Estimate single-observer line-transect distance function
dE.multi

Estimate multiple-observer line-transect distance functions
errDataUnk

Unknown error message
effort

Effort information
halfnorm.like

Half-normal distance function
gxEstim

Estimate g(0) or g(x)
expansionTerms

Distance function expansion terms
estimateN

Abundance point estimates
getNCores

Set number of cores
groupSizes

Group Sizes
hazrate.like

Hazard rate likelihood
halfnorm.start.limits

Start and limit values for halfnorm distance function
insertOneStepBreaks

Insert oneStep Likelihood breaks
hermite.expansion

Hermite expansion factors
integrateKey

Compute and print distance function integration
integrateHazrateLines

Integrate Hazard-rate line survey distance functions
integrateDfuncs

Integration of distance functions
integrateHalfnormPoints

Integrate Half-normal Point transects
hazrate.start.limits

Start and limit values for hazrate distance function
integrateHalfnormLines

Integrate Half-normal line surveys
integrateNegexpLines

Integrate Negative exponential
integrateOneStepPoints

Integrate Point-survey One-step function
integrateOneStepNumeric

Numeric Integration of One-step Function
integrateNegexpPoints

Integrate Negative exponential point surveys
integrateOneStepLines

Integrate Line-transect One-step function
integrateGammaLines

Integrate Gamma line surveys
integrateNumeric

Numeric Integration
is.RdistDf

Check RdistDf data frames
is.smoothed

Tests for smoothed distance functions
intercept.only

Detect intercept-only distance function
is.points

Tests for point surveys
is.Unitless

Test whether object is unitless
likeParamNames

Likelihood parameter names
model.matrix.dfunc

Rdistance model matrix
negexp.start.limits

Start and limit values for negexp distance function
maximize.g

Find coordinate of function maximum
negexp.like

Negative exponential likelihood
nLL

Negative log likelihood of distances
nCovars

Number of covariates
observationType

Type of observations
lines.dfunc

lines.dfunc - Line plotting method for distance functions
predDfuncs

Predict distance functions
oneBsIter

Calculations for one bootstrap iteration
perpDists

Compute off-transect distances from sighting distances and angles
predDensity

Density on transects
mlEstimates

Distance function maximum likelihood estimates
predLikelihood

Distance function values at observations
plot.dfunc.para

Plot parametric distance functions
plot.dfunc

Plot method for distance (detection) functions
parseModel

Parse Rdistance model
oneStep.start.limits

oneStep likelihood start and limit values
sparrowDfuncObserver

Brewer's Sparrow detection function
sparrowDf

Brewer's Sparrow detection data frame in Rdistance >4.0.0 format.
predict.dfunc

Predict distance functions
oneStep.like

Mixture of two uniforms likelihood
print.abund

Print abundance estimates
simple.expansion

Simple polynomial expansion factors
simpsonCoefs

Simpson numerical integration coefficients
thrasherDf

Sage Thrasher detection data frame in Rdistance >4.0.0 format
summary.dfunc

Summarize a distance function object
thrasherSiteData

Sage Thrasher site data.
sine.expansion

Sine expansion terms
sparrowDetectionData

Brewer's Sparrow detection data
summary.abund

Summarize abundance estimates
secondDeriv

Numeric second derivatives
transectType

Type of transects
summary.rowwise_df

Summary method for Rdistance data frames
print.dfunc

Print method for distance function object
%#%

Unit assignment helpers
sparrowSiteData

Brewer's Sparrow site data
thrasherDetectionData

Sage Thrasher detection data
unnest

Unnest an RdistDf data frame
varcovarEstim

Estimate variance-covariance
startLimits

Distance function starting values and limits
GammaModes

Modes of the Gamma distribution
GammaReparam

Reparameterise Gamma parameters for use in dgamma
HookeJeeves

'nlminb' optimizer
Gamma.like

Gamma distance function
Nlminb

'nlminb' optimizer
AIC.dfunc

AIC-related fit statistics for detection functions
Optim

'optim' optimizer
Gamma.start.limits

Gamma.start.limits - Start and limit values for Gamma distance function
EDR

Effective Detection Radius (EDR) for point transects
ESW

Effective Strip Width (ESW) for line transects
autoDistSamp

Automated classical distance analysis
bootstrap

Perform bootstrap iterations
Rdistance-package

Rdistance - Distance Sampling Analyses for Abundance Estimation
RdistanceControls

Rdistance optimization control parameters.
bcCI

Bias corrected bootstraps
bspline.expansion

B-spline expansion terms
checkUnits

Check for the presence of units
abundEstim

Distance Sampling Abundance Estimates
checkNEvalPts

Check number of numeric integration intervals
RdistDf

Construct Rdistance nested data frames