Learn R Programming

Rdistance (version 4.3.1)

Density and Abundance from Distance-Sampling Surveys

Description

Distance-sampling () is a field survey and analytical method that estimates density and abundance of survey targets (e.g., animals) when detection probability declines with observation distance. Distance-sampling is popular in ecology, especially when survey targets are observed from aerial platforms (e.g., airplane or drone), surface vessels (e.g., boat or truck), or along walking transects. Analysis involves fitting smooth (parametric) curves to histograms of observation distances and using those functions to adjust density estimates for missed targets. Routines included here fit curves to observation distance histograms, estimate effective sampling area, density of targets in surveyed areas, and the abundance of targets in a surrounding study area. Confidence interval estimation uses built-in bootstrap resampling. Help files are extensive and have been vetted by multiple authors. Many tutorials are available on the package's website (URL below).

Copy Link

Version

Install

install.packages('Rdistance')

Monthly Downloads

434

Version

4.3.1

License

GNU General Public License

Maintainer

Trent McDonald

Last Published

February 11th, 2026

Functions in Rdistance (4.3.1)

bcCI

Bias corrected bootstraps
bspline.expansion

B-spline expansion terms
RdistDf

Construct Rdistance nested data frames
checkNEvalPts

Check number of numeric integration intervals
autoDistSamp

Automated classical distance analysis
bootstrap

Perform bootstrap iterations
Rdistance-package

Rdistance - Distance Sampling Analyses for Abundance Estimation
checkUnits

Check for the presence of units
RdistanceControls

Rdistance optimization control parameters.
abundEstim

Distance Sampling Abundance Estimates
distances

Observation distances
coef.dfunc

Coefficients of an estimated detection function
dE.single

Estimate single-observer line-transect distance function
dE.multi

Estimate multiple-observer line-transect distance functions
cosine.expansion

Cosine expansion terms
effectiveDistance

Effective sampling distances
differentiableLikelihoods

Differentiable likelihoods in Rdistance
colorize

Add color to result if terminal accepts it
dfuncEstimErrMessage

dfuncEstim error messages
dfuncEstim

Estimate a distance-based detection function
halfnorm.like

Half-normal distance function
errDataUnk

Unknown error message
effort

Effort information
expansionTerms

Distance function expansion terms
halfnorm.start.limits

Start and limit values for halfnorm distance function
hazrate.like

Hazard rate likelihood
gxEstim

Estimate g(0) or g(x)
estimateN

Abundance point estimates
groupSizes

Group Sizes
getNCores

Set number of cores
insertOneStepBreaks

Insert oneStep Likelihood breaks
integrateGammaLines

Integrate Gamma line surveys
integrateHalfnormLines

Integrate Half-normal line surveys
integrateHalfnormPoints

Integrate Half-normal Point transects
integrateHazrateLines

Integrate Hazard-rate line survey distance functions
integrateKey

Compute and print distance function integration
integrateDfuncs

Integration of distance functions
hermite.expansion

Hermite expansion factors
hazrate.start.limits

Start and limit values for hazrate distance function
integrateNegexpLines

Integrate Negative exponential
is.smoothed

Tests for smoothed distance functions
integrateNegexpPoints

Integrate Negative exponential point surveys
is.points

Tests for point surveys
integrateNumeric

Numeric Integration
integrateOneStepLines

Integrate Line-transect One-step function
is.RdistDf

Check RdistDf data frames
is.Unitless

Test whether object is unitless
intercept.only

Detect intercept-only distance function
integrateOneStepPoints

Integrate Point-survey One-step function
integrateOneStepNumeric

Numeric Integration of One-step Function
nCovars

Number of covariates
negexp.like

Negative exponential likelihood
observationType

Type of observations
maximize.g

Find coordinate of function maximum
model.matrix.dfunc

Rdistance model matrix
mlEstimates

Distance function maximum likelihood estimates
negexp.start.limits

Start and limit values for negexp distance function
likeParamNames

Likelihood parameter names
lines.dfunc

lines.dfunc - Line plotting method for distance functions
nLL

Negative log likelihood of distances
predDensity

Density on transects
oneStep.start.limits

oneStep likelihood start and limit values
predDfuncs

Predict distance functions
plot.dfunc.para

Plot parametric distance functions
predLikelihood

Distance function values at observations
oneBsIter

Calculations for one bootstrap iteration
perpDists

Compute off-transect distances from sighting distances and angles
oneStep.like

Mixture of two uniforms likelihood
parseModel

Parse Rdistance model
plot.dfunc

Plot method for distance (detection) functions
print.abund

Print abundance estimates
sparrowDetectionData

Brewer's Sparrow detection data
secondDeriv

Numeric second derivatives
simpsonCoefs

Simpson numerical integration coefficients
sine.expansion

Sine expansion terms
sparrowDfuncObserver

Brewer's Sparrow detection function
print.dfunc

Print method for distance function object
predict.dfunc

Predict distance functions
simple.expansion

Simple polynomial expansion factors
sparrowDf

Brewer's Sparrow detection data frame in Rdistance >4.0.0 format.
transectType

Type of transects
summary.rowwise_df

Summary method for Rdistance data frames
summary.dfunc

Summarize a distance function object
thrasherDetectionData

Sage Thrasher detection data
startLimits

Distance function starting values and limits
thrasherDf

Sage Thrasher detection data frame in Rdistance >4.0.0 format
summary.abund

Summarize abundance estimates
thrasherSiteData

Sage Thrasher site data.
sparrowSiteData

Brewer's Sparrow site data
varcovarEstim

Estimate variance-covariance
unnest

Unnest an RdistDf data frame
%#%

Unit assignment helpers
EDR

Effective Detection Radius (EDR) for point transects
ESW

Effective Strip Width (ESW) for line transects
GammaReparam

Reparameterise Gamma parameters for use in dgamma
Gamma.start.limits

Gamma.start.limits - Start and limit values for Gamma distance function
Gamma.like

Gamma distance function
AIC.dfunc

AIC-related fit statistics for detection functions
GammaModes

Modes of the Gamma distribution
Nlminb

'nlminb' optimizer
HookeJeeves

'nlminb' optimizer
Optim

'optim' optimizer