Fit the Extended Pareto Distribution (GPD) to the exceedances (peaks) over a threshold. Optionally, these estimates are plotted as a function of
EPD(data, rho = -1, start = NULL, direct = FALSE, warnings = FALSE,
logk = FALSE, plot = FALSE, add = FALSE, main = "EPD estimates of the EVI", ...)
Vector of
A parameter for the -1
.
Vector of length 2 containing the starting values for the optimisation. The first element
is the starting value for the estimator of direct=TRUE
. Default is NULL
meaning the initial value for
Logical indicating if the parameters are obtained by directly maximising the log-likelihood function, see Details. Default is FALSE
.
Logical indicating if possible warnings from the optimisation function are shown, default is FALSE
.
Logical indicating if the estimates are plotted as a function of logk=TRUE
) or as a function of FALSE
.
Logical indicating if the estimates of FALSE
.
Logical indicating if the estimates of FALSE
.
Title for the plot, default is "EPD estimates of the EVI"
.
Additional arguments for the plot
function, see plot
for more details.
A list with following components:
Vector of the values of the tail parameter
Vector of the corresponding estimates for the
Vector of the corresponding MLE estimates for the
Vector of the corresponding estimates for the
We fit the Extended Pareto distribution to the relative excesses over a threshold (X/u).
The EPD has distribution function
The parameters are determined using MLE and there are two possible approaches:
maximise the log-likelihood directly (direct=TRUE
) or follow the approach detailed in
Beirlant et al. (2009) (direct=FALSE
). The latter approach uses the score functions of the log-likelihood.
See Section 4.2.1 of Albrecher et al. (2017) for more details.
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant, J., Joossens, E. and Segers, J. (2009). "Second-Order Refined Peaks-Over-Threshold Modelling for Heavy-Tailed Distributions." Journal of Statistical Planning and Inference, 139, 2800--2815.
Fraga Alves, M.I. , Gomes, M.I. and de Haan, L. (2003). "A New Class of Semi-parametric Estimators of the Second Order Parameter." Portugaliae Mathematica, 60, 193--214.
# NOT RUN {
data(secura)
# EPD estimates for the EVI
epd <- EPD(secura$size, plot=TRUE)
# Compute return periods
ReturnEPD(secura$size, 10^10, gamma=epd$gamma, kappa=epd$kappa,
tau=epd$tau, plot=TRUE)
# }
Run the code above in your browser using DataLab