Non-parametric estimator of the conditional survival function of
crSurv(x, y, Xtilde, Ytilde, censored, h,
kernel = c("biweight", "normal", "uniform", "triangular", "epanechnikov"))
The value of the conditioning variable x
needs to be a single number or a vector with the same length as y
.
The value(s) of the variable
Vector of length
Vector of length
A logical vector of length
Bandwidth of the non-parametric estimator.
Kernel of the non-parametric estimator. One of "biweight"
(default), "normal"
, "uniform"
, "triangular"
and "epanechnikov"
.
Estimates for
We estimate the conditional survival function
The estimator is given by
See Section 4.4.3 in Albrecher et al. (2017) for more details.
Akritas, M.G. and Van Keilegom, I. (2003). "Estimation of Bivariate and Marginal Distributions With Censored Data." Journal of the Royal Statistical Society: Series B, 65, 457--471.
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
# NOT RUN {
# Set seed
set.seed(29072016)
# Pareto random sample
Y <- rpareto(200, shape=2)
# Censoring variable
C <- rpareto(200, shape=1)
# Observed (censored) sample of variable Y
Ytilde <- pmin(Y, C)
# Censoring indicator
censored <- (Y>C)
# Conditioning variable
X <- seq(1, 10, length.out=length(Y))
# Observed (censored) sample of conditioning variable
Xtilde <- X
Xtilde[censored] <- X[censored] - runif(sum(censored), 0, 1)
# Plot estimates of the conditional survival function
x <- 5
y <- seq(0, 5, 1/100)
plot(y, crSurv(x, y, Xtilde=Xtilde, Ytilde=Ytilde, censored=censored, h=5), type="l",
xlab="y", ylab="Conditional survival function")
# }
Run the code above in your browser using DataLab