trQuant
computes estimates of large quantiles trQuantW
computes estimates of large quantiles
trQuant(data, r = 1, rough = TRUE, gamma, DT, p, plot = FALSE, add = FALSE,
main = "Estimates of extreme quantile", ...)
trQuantW(data, gamma, DT, p, plot = FALSE, add = FALSE,
main = "Estimates of extreme quantile", ...)
Vector of
Trimming parameter, default is 1
(no trimming).
Logical indicating if rough truncation is present, default is TRUE
.
Vector of trHill
.
Vector of trDT
.
The exceedance probability of the quantile (we estimate
Logical indicating if the estimates should be plotted as a function of FALSE
.
Logical indicating if the estimates should be added to an existing plot, default is FALSE
.
Title for the plot, default is "Estimates of extreme quantile"
.
Additional arguments for the plot
function, see plot
for more details.
A list with following components:
Vector of the values of the tail parameter
Vector of the corresponding quantile estimates.
The used exceedance probability.
We observe the truncated r.v.
Under rough truncation, the quantiles for
Under light truncation, the quantiles are estimated using the Weissman estimator with the Hill estimates replaced
by the truncated Hill estimates:
To decide between light and rough truncation, one can use the test implemented in trTest
.
The quantiles for
See Beirlant et al. (2016) or Section 4.2.3 of Albrecher et al. (2017) for more details.
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant, J., Fraga Alves, M.I. and Gomes, M.I. (2016). "Tail fitting for Truncated and Non-truncated Pareto-type Distributions." Extremes, 19, 429--462.
trHill
, trDT
, trProb
, trEndpoint
, trTest
, Quant
, trQuantMLE
# NOT RUN {
# Sample from truncated Pareto distribution.
# truncated at 99% quantile
shape <- 2
X <- rtpareto(n=1000, shape=shape, endpoint=qpareto(0.99, shape=shape))
# Truncated Hill estimator
trh <- trHill(X, plot=TRUE, ylim=c(0,2))
# Truncation odds
dt <- trDT(X, gamma=trh$gamma, plot=TRUE, ylim=c(0,2))
# Large quantile
p <- 10^(-5)
# Truncated distribution
trQuant(X, gamma=trh$gamma, DT=dt$DT, p=p, plot=TRUE)
# Original distribution
trQuantW(X, gamma=trh$gamma, DT=dt$DT, p=p, plot=TRUE, ylim=c(0,1000))
# }
Run the code above in your browser using DataLab