require(fda)
# Brownian Bridge simulation on [0,1]
M <- 110 # number of components
N <- 20 # number of instances
n <- 100 # number of grides
t0 <- seq(0, 1, len = n)
j <- 1:M
alpha1 <- list(a1 = 2^seq(0, 1, length.out = 3), a2 = 2^seq(0, 1, length.out = 3))
sparse_tuning = as.integer(seq(1, N-1, length.out = 10))
psi_1 <- function(t, m) sin(m * pi * t) # eigenfunction of BB
psi_2 <- function(t, m) sin((2 * m - 1) * pi / 2 * t) # eigenfunction of BM
PC_1 <- outer(t0, j, FUN = psi_1) # n by M matrix
PC_2 <- outer(t0, j, FUN = psi_2) # n by M matrix
Z <- matrix(rnorm(N * M), nr = M)
lambda <- matrix(2 / (pi * (2 * j - 1)), nr = M, nc = N)
X_1t <- PC_1 %*% (lambda * Z)
X_2t <- PC_2 %*% (lambda * Z)
noise <- rnorm(n * N, 0, 0.1)
X_1 <- X_1t + noise
X_2 <- X_2t + noise
bs <- create.bspline.basis(c(0, 1), 51)
mdbs <- Basismfd(bs)
mfd1 <- Mfd(X = X_1, mdbs = mdbs)
mfd2 <- Mfd(X = X_2, mdbs = mdbs)
mvmfd_obj <- Mvmfd(mfd1, mfd2)
k <- 2
# Non Regularized MFPCA based on sequential power algorithm
Re0 <- Remfpca(mvmfd_obj, ncomp = k, smooth_GCV = FALSE, sparse_CV = FALSE)
fpc0 <- Re0$pc_mfd
scores0 <- inprod_mvmfd(mvmfd_obj, fpc0)
dim(scores0)
# Smooth MFPCA based on sequential power algorithm
Re1 <- Remfpca(mvmfd_obj, ncomp = k, smooth_tuning = alpha1)
# Smooth and sparse MFPCA based on sequential power algorithm
Re2 <- Remfpca(mvmfd_obj, ncomp = k, smooth_tuning = alpha1, sparse_tuning = sparse_tuning)
# Smooth MFPCA based on joint power algorithm
Re3 <- Remfpca(mvmfd_obj, ncomp = k, smooth_tuning = alpha1, alpha_orth = TRUE)
# Smooth MFPCA based on eigen decomposition algorithm
Re4 <- Remfpca(mvmfd_obj, ncomp = k, smooth_tuning = alpha1, method = "eigen")
Run the code above in your browser using DataLab