Learn R Programming

Rearrangement (version 2.1)

lprq2: Local Linear Regression Methods for Conditional Quantile Functions

Description

Implements the local nonparametric method, local linear regression estimator with box kernel (default), for conditional quantile functions. This is a modification of Koenker's lprq ( from package quantreg).

Usage

lprq2(x, y, h, xx, tau)

Arguments

x
The conditioning covariate
y
The response variable
h
The bandwidth parameter
xx
The points at which the function is to be estimated
tau
The quantile(s) to be estimated. This should be a list of quantiles if the function estimates the quantile process

Value

xx
The design points at which the evaluation occurs
fitted.values
The estimated function values at these design points

Details

The function uses a box kernel.

Examples

Run this code
require(quantreg)
data(GrowthChart)
attach(GrowthChart)

ages <- unique(sort(age))
llq.fit1 <- lprq2(age,height,h=1,xx=ages,tau=0.2)
detach(GrowthChart)

Run the code above in your browser using DataLab