Learn R Programming

Recon (version 0.1.0.0)

cournot_solver: Cournot Duopoly with numeric solution

Description

This function numerically finds the equilibrium in a Cournot duopoly model with quadratic functions. For guaranteed existence of equilibrium, cost parameters should be non-negative. The general functional form for a function of argument x is \(f(x) = p_0 + p_1 x + p_2 x^2\). Parameters c1 and c2 refer to firms 1 and 2. Parameters p refer to the inverse demand function.

Usage

cournot_solver(c1_0 = 0, c1_1 = 1, c1_2 = 0, c2_0 = 0, c2_1 = 1,
  c2_2 = 0, p0 = 0, p1 = -1, p2 = 0)

Arguments

c1_0

intercept of firm 1's cost function

c1_1

linear term's parameter of firm 1's cost function

c1_2

quadratic term's parameter of firm 1's cost function

c2_0

intercept of firm 2's cost function

c2_1

linear term's parameter of firm 2's cost function

c2_2

quadratic term's parameter of firm 2's cost function

p0

intercept of inverse demand function

p1

linear term's parameter of inverse demand function

p2

quadratic term's parameter of inverse demand function

Value

List with market price, firm output, profits and market share

Examples

Run this code
# NOT RUN {
cournot_solver(p0 = 20)

# }

Run the code above in your browser using DataLab