Learn R Programming

RecordLinkage (version 0.3-2)

classifySupv: Supervised Classification

Description

Supervised classification of record pairs based on a trained model.

Usage

classifySupv(model, newdata, ...)

## S3 method for class 'RecLinkClassif,RecLinkData': classifySupv(model, newdata, convert.na = TRUE, ...)

## S3 method for class 'RecLinkClassif,RLBigData': classifySupv(model, newdata, convert.na = TRUE, withProgressBar = (sink.number()==0), ...)

Arguments

model
Object of class RecLinkClassif. The calibrated model. See trainSupv.
newdata
Object of class "RecLinkData" or "RLBigData". The data to classify.
convert.na
Logical. Whether to convert missing values in the comparison patterns to 0.
withProgressBar
Whether to display a progress bar
...
Further arguments for the predict method.

Value

  • For the "RecLinkData" method, a S3 object of class "RecLinkResult" that represents a copy of newdata with element rpairs$prediction, which stores the classification result, as addendum.

    For the "RLBigData" method, a S4 object of class "RLResult".

Details

The record pairs in newdata are classified by calling the appropriate predict method for model$model.

By default, the "RLBigDataDedup" method displays a progress bar unless output is diverted by sink, e.g. when processing a Sweave file.

See Also

trainSupv for training of classifiers, classifyUnsup for unsupervised classification.

Examples

Run this code
# Split data into training and validation set, train and classify with rpart
data(RLdata500)
pairs=compare.dedup(RLdata500, identity=identity.RLdata500,
                    blockfld=list(1,3,5,6,7))
l=splitData(pairs, prop=0.5, keep.mprop=TRUE)                    
model=trainSupv(l$train, method="rpart", minsplit=5)
result=classifySupv(model=model, newdata=l$valid)
summary(result)

Run the code above in your browser using DataLab