Computes various error measures for the classification of a data set.
A list with components alpha
, beta
, accuracy
,
precision
, sensitivity
, specificity
, ppv
and
npv
, each a number in the range \([0,1]\).
signature(object = "RecLinkResult")
Method for S3 result objects of class "RecLinkResult"
signature(object = "RLResult")
Method for S4 objects of class "RLResult"
,
from classification of big data objects (see "RLBigData"
,
"RLBigDataDedup"
, "RLBigDataLinkage"
)
A wrapper function errorMeasures(result)
exists for compatibility with package version
0.2.
Murat Sariyar, Andreas Borg
Let \(\mathit{TP}\) be the number of correctly classified matches (true positives), \(\mathit{TN}\) the number of correctly classified non-matches (true negatives), \(\mathit{FP}\) and \(\mathit{FN}\) the number of misclassified non-matches and matches (false positives and false negatives). The calculated error measures are:
\(\frac{\mathit{FN}}{\mathit{TP}+\mathit{FN}}\)
\(\frac{\mathit{FP}}{\mathit{TN}+\mathit{FP}}\)
\(\frac{\mathit{TP}+\mathit{TN}}{\mathit{TP}+\mathit{TN}+\mathit{FP}+\mathit{FN}}\)
\(\frac{\mathit{TP}}{\mathit{TP}+\mathit{FP}}\)
\(\frac{\mathit{TP}}{\mathit{TP}+\mathit{FN}}\)
\(\frac{\mathit{TN}}{\mathit{TN}+\mathit{FP}}\)
Positive predictive value:\(\frac{\mathit{TP}}{\mathit{TP}+\mathit{FP}}\)
Negative predictive value:\(\frac{\mathit{TN}}{\mathit{TN}+\mathit{FN}}\)