# NOT RUN {
# Create Growth Data
data <-
data.table::data.table(Target = seq(1, 500, 1),
Variable = rep(1, 500))
for (i in as.integer(1:500)) {
if (i == 1) {
var <- data[i, "Target"][[1]]
data.table::set(data,
i = i,
j = 2L,
value = var * (1 + runif(1) / 100))
} else {
var <- data[i - 1, "Variable"][[1]]
data.table::set(data,
i = i,
j = 2L,
value = var * (1 + runif(1) / 100))
}
}
# Add jitter to Target
data[, Target := jitter(Target,
factor = 0.25)]
# To keep original values
data1 <- data.table::copy(data)
# Merge and Model data
data11 <- AutoNLS(
data = data,
y = "Target",
x = "Variable",
monotonic = TRUE
)
# Join predictions to source data
data2 <- merge(
data1,
data11$PredictionData,
by = "Variable",
all = FALSE
)
# Plot output
ggplot2::ggplot(data2, ggplot2::aes(x = Variable)) +
ggplot2::geom_line(ggplot2::aes(y = data2[["Target.x"]],
color = "Target")) +
ggplot2::geom_line(ggplot2::aes(y = data2[["Target.y"]],
color = "Predicted")) +
RemixAutoML::ChartTheme(Size = 12) +
ggplot2::ggtitle(paste0("Growth Models AutoNLS: ",
data11$ModelName)) +
ggplot2::ylab("Target Variable") +
ggplot2::xlab("Independent Variable") +
ggplot2::scale_colour_manual("Values",
breaks = c("Target",
"Predicted"),
values = c("red",
"blue"))
summary(data11$ModelObject)
data11$EvaluationMetrics
# }
Run the code above in your browser using DataLab