# NOT RUN {
Correl <- 0.85
N <- 10000
data <- data.table::data.table(Target = runif(N))
data[, x1 := qnorm(Target)]
data[, x2 := runif(N)]
data[, Independent_Variable1 := log(pnorm(Correl * x1 +
sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable2 := (pnorm(Correl * x1 +
sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable3 := exp(pnorm(Correl * x1 +
sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 +
sqrt(1-Correl^2) * qnorm(x2))))]
data[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable6 := (pnorm(Correl * x1 +
sqrt(1-Correl^2) * qnorm(x2)))^0.10]
data[, Independent_Variable7 := (pnorm(Correl * x1 +
sqrt(1-Correl^2) * qnorm(x2)))^0.25]
data[, Independent_Variable8 := (pnorm(Correl * x1 +
sqrt(1-Correl^2) * qnorm(x2)))^0.75]
data[, Independent_Variable9 := (pnorm(Correl * x1 +
sqrt(1-Correl^2) * qnorm(x2)))^2]
data[, Independent_Variable10 := (pnorm(Correl * x1 +
sqrt(1-Correl^2) * qnorm(x2)))^4]
data[, Target := as.factor(
ifelse(Independent_Variable2 < 0.20, "A",
ifelse(Independent_Variable2 < 0.40, "B",
ifelse(Independent_Variable2 < 0.6, "C",
ifelse(Independent_Variable2 < 0.8, "D", "E")))))]
data[, Independent_Variable11 := as.factor(
ifelse(Independent_Variable2 < 0.25, "A",
ifelse(Independent_Variable2 < 0.35, "B",
ifelse(Independent_Variable2 < 0.65, "C",
ifelse(Independent_Variable2 < 0.75, "D", "E")))))]
data[, ':=' (x1 = NULL, x2 = NULL)]
TestModel <- AutoXGBoostMultiClass(data,
TrainOnFull = FALSE,
ValidationData = NULL,
TestData = NULL,
TargetColumnName = 1,
FeatureColNames = 2:12,
IDcols = NULL,
eval_metric = "merror",
Trees = 50,
GridTune = TRUE,
grid_eval_metric = "accuracy",
MaxModelsInGrid = 10,
NThreads = 8,
TreeMethod = "hist",
Objective = 'multi:softmax',
model_path = NULL,
metadata_path = NULL,
ModelID = "FirstModel",
ReturnModelObjects = TRUE,
ReturnFactorLevels = TRUE,
SaveModelObjects = FALSE,
PassInGrid = NULL)
# }
Run the code above in your browser using DataLab