powered by
ParallelAutoNNET to run the 4 data sets at once
ParallelAutoNNET( Output, MetricSelection = "MAE", MaxFourierTerms = 1, TrainValidateShare = c(0.5, 0.5), MaxNumberModels = 20, MaxRunMinutes = 5, MaxRunsWithoutNewWinner = 12 )
The output returned from TimeSeriesDataPrepare()
Choose from MAE, MSE, and MAPE
Fourier pairs
c(0.50,0.50)
20
5
12
Time series data sets to pass onto auto modeling functions
Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildNNET(), FinalBuildTBATS(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeETS(), OptimizeNNET(), OptimizeTBATS(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoETS(), ParallelAutoTBATS(), ParallelAutoTSLM(), PredictArima(), RL_Performance(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare(), WideTimeSeriesEnsembleForecast()
FinalBuildArfima()
FinalBuildArima()
FinalBuildETS()
FinalBuildNNET()
FinalBuildTBATS()
FinalBuildTSLM()
GenerateParameterGrids()
OptimizeArfima()
OptimizeArima()
OptimizeETS()
OptimizeNNET()
OptimizeTBATS()
OptimizeTSLM()
ParallelAutoARIMA()
ParallelAutoArfima()
ParallelAutoETS()
ParallelAutoTBATS()
ParallelAutoTSLM()
PredictArima()
RL_Performance()
Regular_Performance()
StackedTimeSeriesEnsembleForecast()
TimeSeriesDataPrepare()
WideTimeSeriesEnsembleForecast()
# NOT RUN { ParallelAutoNNET( MetricSelection = "MAE", Output = NULL, MaxRunsWithoutNewWinner = 20, TrainValidateShare = c(0.50,0.50), MaxNumberModels = 5, MaxRunMinutes = 5) # }
Run the code above in your browser using DataLab