# NOT RUN {
Output <- RemixAutoML::AutoCatBoostHurdleModel(
# Operationalization
task_type = "GPU",
ModelID = "ModelTest",
SaveModelObjects = FALSE,
ReturnModelObjects = TRUE,
# Data related args
data = data,
TimeWeights = NULL,
TrainOnFull = FALSE,
ValidationData = NULL,
TestData = NULL,
Buckets = 0L,
TargetColumnName = NULL,
FeatureColNames = NULL,
PrimaryDateColumn = NULL,
IDcols = NULL,
# Metadata args
Paths = normalizePath("./"),
MetaDataPaths = NULL,
TransformNumericColumns = NULL,
Methods =
c("BoxCox", "Asinh", "Asin", "Log",
"LogPlus1", "Logit", "YeoJohnson"),
ClassWeights = NULL,
SplitRatios = c(0.70, 0.20, 0.10),
NumOfParDepPlots = 10L,
# Grid tuning setup
PassInGrid = NULL,
GridTune = FALSE,
BaselineComparison = "default",
MaxModelsInGrid = 1L,
MaxRunsWithoutNewWinner = 20L,
MaxRunMinutes = 60L*60L,
Shuffles = 2L,
MetricPeriods = 25L,
# Bandit grid args
Langevin = FALSE,
DiffusionTemperature = 10000,
Trees = list("classifier" = seq(1000,2000,100),
"regression" = seq(1000,2000,100)),
Depth = list("classifier" = seq(6,10,1),
"regression" = seq(6,10,1)),
RandomStrength = list("classifier" = seq(1,10,1),
"regression" = seq(1,10,1)),
BorderCount = list("classifier" = seq(32,256,16),
"regression" = seq(32,256,16)),
LearningRate = list("classifier" = seq(0.01,0.25,0.01),
"regression" = seq(0.01,0.25,0.01)),
L2_Leaf_Reg = list("classifier" = seq(3.0,10.0,1.0),
"regression" = seq(1.0,10.0,1.0)),
RSM = list("classifier" = c(0.80, 0.85, 0.90, 0.95, 1.0),
"regression" = c(0.80, 0.85, 0.90, 0.95, 1.0)),
BootStrapType = list("classifier" = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
"regression" = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No")),
GrowPolicy = list("classifier" = c("SymmetricTree", "Depthwise", "Lossguide"),
"regression" = c("SymmetricTree", "Depthwise", "Lossguide")))
# }
Run the code above in your browser using DataLab