# NOT RUN {
Output <- RemixAutoML::AutoXGBoostHurdleModel(
# Operationalization args
TreeMethod = "hist",
TrainOnFull = FALSE,
PassInGrid = NULL,
# Metadata args
NThreads = max(1L, parallel::detectCores()-2L),
ModelID = "ModelTest",
Paths = normalizePath("./"),
MetaDataPaths = NULL,
# data args
data,
ValidationData = NULL,
TestData = NULL,
Buckets = 0L,
TargetColumnName = NULL,
FeatureColNames = NULL,
IDcols = NULL,
# options
TransformNumericColumns = NULL,
SplitRatios = c(0.70, 0.20, 0.10),
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
NumOfParDepPlots = 10L,
# grid tuning args
GridTune = FALSE,
grid_eval_metric = "accuracy",
MaxModelsInGrid = 1L,
BaselineComparison = "default",
MaxRunsWithoutNewWinner = 10L,
MaxRunMinutes = 60L,
# bandit hyperparameters
Trees = list("classifier" = seq(1000,2000,100),
"regression" = seq(1000,2000,100)),
eta = list("classifier" = seq(0.05,0.40,0.05),
"regression" = seq(0.05,0.40,0.05)),
max_depth = list("classifier" = seq(4L,16L,2L),
"regression" = seq(4L,16L,2L)),
# random hyperparameters
min_child_weight = list("classifier" = seq(1.0,10.0,1.0),
"regression" = seq(1.0,10.0,1.0)),
subsample = list("classifier" = seq(0.55,1.0,0.05),
"regression" = seq(0.55,1.0,0.05)),
colsample_bytree = list("classifier" = seq(0.55,1.0,0.05),
"regression" = seq(0.55,1.0,0.05)))
# }
Run the code above in your browser using DataLab