
Last chance! 50% off unlimited learning
Sale ends in
ID_MetadataGenerator for summary metadata for transactional data. The data returned from this function feeds into the IntermittentDemandBootStrapper() function.
ID_MetadataGenerator(
data,
RestrictDateRange = TRUE,
DateVariableName = NULL,
GroupingVariables = NULL,
MinTimeWindow = 1L,
MinTxnRecords = 2L,
DateInterval = "day"
)
This is your transactional level data
= TRUE
Bla
Bla
The number of time periods you would like to omit for training. Default is 1 so that at a minimum, there is at least one period of values to forecast. You can set it up to a larger value if you do not want more possible target windows for the lower target window values.
I typically set this to 2 so that there is at least one other instance of demand so that the forecasted values are not complete nonsense.
This is the time unit for determining date calculations
Returns a data.table with summary information for the IntermittentDemandBootStrapper() function.
Other Feature Engineering Helper:
AutoFourierFeatures()
,
ID_BuildTrainDataSets()
,
ID_TrainingDataGenerator2()
,
ID_TrainingDataGenerator()
# NOT RUN {
# Generate Metadata----
MetaData <- ID_MetadataGenerator(
data = data,
RestrictDateRange = TRUE,
DateVariableName = DateVariableName,
GroupingVariables = GroupingVariables,
MinTimeWindow = MinTimeWindow,
MinTxnRecords = MinTxnRecords,
DateInterval = TimeUnit,
TimeUnit = TimeUnit
)
# }
Run the code above in your browser using DataLab