
Last chance! 50% off unlimited learning
Sale ends in
ParallelAutoTBATS to run the 4 data sets at once
ParallelAutoTBATS(
Output,
MetricSelection = "MAE",
TrainValidateShare = c(0.5, 0.5),
NumCores = max(1L, min(4L, parallel::detectCores() - 2L))
)
The output returned from TimeSeriesDataPrepare()
Choose from MAE, MSE, and MAPE
The value returned from TimeSeriesPrepare()
Default of max(1L, min(4L, parallel::detectCores())). Up to 4 cores can be utilized.
Time series data sets to pass onto auto modeling functions
Other Time Series Helper:
FinalBuildArfima()
,
FinalBuildArima()
,
FinalBuildETS()
,
FinalBuildNNET()
,
FinalBuildTBATS()
,
FinalBuildTSLM()
,
GenerateParameterGrids()
,
OptimizeArfima()
,
OptimizeArima()
,
OptimizeETS()
,
OptimizeNNET()
,
OptimizeTBATS()
,
OptimizeTSLM()
,
ParallelAutoARIMA()
,
ParallelAutoArfima()
,
ParallelAutoETS()
,
ParallelAutoNNET()
,
ParallelAutoTSLM()
,
PredictArima()
,
RL_Performance()
,
Regular_Performance()
,
StackedTimeSeriesEnsembleForecast()
,
TimeSeriesDataPrepare()
,
WideTimeSeriesEnsembleForecast()
# NOT RUN {
ParallelAutoTBATS(
MetricSelection = "MAE",
Output = NULL,
TrainValidateShare = c(0.50,0.50),
NumCores = max(1L, min(4L, parallel::detectCores()-2L)))
# }
Run the code above in your browser using DataLab