
Last chance! 50% off unlimited learning
Sale ends in
AutoClusteringScoring adds a column to your original data with a cluster number identifier. You can run request an autoencoder to be built to reduce the dimensionality of your data before running the clusering algo.
AutoClusteringScoring(
data,
FeatureColumns = NULL,
ModelID = "TestModel",
SavePath = NULL,
NThreads = 8,
MaxMemory = "28G",
DimReduction = TRUE
)
is the source time series data.table
Independent variables
This is returned from the training run in the output list with element named 'model_name'. It's not identical to the ModelID used in training due to the grid tuning.
Directory path for saving models
set based on number of threads your machine has available
set based on the amount of memory your machine has available
Set to TRUE if you set RunDimReduction in the training version of this function
Original data.table with added column with cluster number identifier
Other Unsupervised Learning:
AutoClustering()
,
GenTSAnomVars()
,
H2OIsolationForestScoring()
,
H2OIsolationForest()
,
ResidualOutliers()
# NOT RUN {
#########################
# Training Setup
#########################
# Create fake data
data <- RemixAutoML::FakeDataGenerator(
Correlation = 0.85,
N = 1000,
ID = 2,
ZIP = 0,
AddDate = TRUE,
Classification = FALSE,
MultiClass = FALSE)
# Run function
data <- RemixAutoML::AutoClustering(
data,
FeatureColumns = names(data)[2:(ncol(data)-1)],
ModelID = "TestModel",
SavePath = getwd(),
NThreads = 8,
MaxMemory = "28G",
MaxClusters = 50,
ClusterMetric = "totss",
RunDimReduction = TRUE,
ShrinkRate = (sqrt(5) - 1) / 2,
Epochs = 5L,
L2_Reg = 0.10,
ElasticAveraging = TRUE,
ElasticAveragingMovingRate = 0.90,
ElasticAveragingRegularization = 0.001)
#########################
# Scoring Setup
#########################
Sys.sleep(10)
# Create fake data
data <- RemixAutoML::FakeDataGenerator(
Correlation = 0.85,
N = 1000,
ID = 2,
ZIP = 0,
AddDate = TRUE,
Classification = FALSE,
MultiClass = FALSE)
# Run function
data <- RemixAutoML::AutoClusteringScoring(
data,
FeatureColumns = names(data)[2:(ncol(data)-1)],
ModelID = "TestModel",
SavePath = getwd(),
NThreads = 8,
MaxMemory = "28G",
DimReduction = TRUE)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab