# NOT RUN {
# Create some dummy correlated data with numeric and categorical features
data <- RemixAutoML::FakeDataGenerator(
Correlation = 0.85,
N = 1000L,
ID = 2L,
ZIP = 0L,
AddDate = FALSE,
Classification = FALSE,
MultiClass = TRUE)
# Run function
TestModel <- RemixAutoML::AutoH2oGLMMultiClass(
# Compute management
MaxMem = {gc();paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo", intern=TRUE)) / 1000000)),"G")},
NThreads = max(1, parallel::detectCores()-2),
H2OShutdown = TRUE,
H2OStartUp = TRUE,
IfSaveModel = "mojo",
# Model evaluation:
eval_metric = "logloss",
NumOfParDepPlots = 3,
# Metadata arguments:
model_path = NULL,
metadata_path = NULL,
ModelID = "FirstModel",
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
SaveInfoToPDF = FALSE,
# Data arguments:
data = data,
TrainOnFull = FALSE,
ValidationData = NULL,
TestData = NULL,
TargetColumnName = "Adrian",
FeatureColNames = names(data)[!names(data) %in% c("IDcol_1", "IDcol_2","Adrian")],
RandomColNumbers = NULL,
InteractionColNumbers = NULL,
WeightsColumn = NULL,
TransformNumericColumns = NULL,
Methods = c("BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Sqrt", "Logit", "YeoJohnson"),
# Model args
GridTune = FALSE,
GridStrategy = "Cartesian",
StoppingRounds = 10,
MaxRunTimeSecs = 3600 * 24 * 7,
MaxModelsInGrid = 10,
Distribution = "multinomial",
Link = "family_default",
RandomDistribution = NULL,
RandomLink = NULL,
Solver = "AUTO",
Alpha = 0.5,
Lambda = NULL,
LambdaSearch = FALSE,
NLambdas = -1,
Standardize = TRUE,
RemoveCollinearColumns = FALSE,
InterceptInclude = TRUE,
NonNegativeCoefficients = FALSE)
# }
Run the code above in your browser using DataLab