# NOT RUN {
# Create some dummy correlated data with numeric and categorical features
data <- RemixAutoML::FakeDataGenerator(
Correlation = 0.85,
N = 1000L,
ID = 2L,
ZIP = 0L,
AddDate = FALSE,
Classification = TRUE,
MultiClass = FALSE)
TestModel <- RemixAutoML::AutoH2oMLClassifier(
data,
TrainOnFull = FALSE,
ValidationData = NULL,
TestData = NULL,
TargetColumnName = "Adrian",
FeatureColNames = names(data)[!names(data) %in% c("IDcol_1", "IDcol_2","Adrian")],
ExcludeAlgos = NULL,
eval_metric = "auc",
CostMatrixWeights = c(1,0,0,1),
MaxMem = {gc();paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo", intern=TRUE)) / 1000000)),"G")},
NThreads = max(1, parallel::detectCores()-2),
MaxModelsInGrid = 10,
model_path = normalizePath("./"),
metadata_path = normalizePath("./"),
ModelID = "FirstModel",
NumOfParDepPlots = 3,
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
IfSaveModel = "mojo",
H2OShutdown = TRUE,
H2OStartUp = TRUE)
# }
Run the code above in your browser using DataLab