Learn R Programming

RemixAutoML (version 0.5.0)

FinalBuildNNET: FinalBuildNNET

Description

FinalBuildNNET to generate forecasts and ensemble data

Usage

FinalBuildNNET(
  ModelOutputGrid = NULL,
  SavePath = NULL,
  TimeSeriesPrepareOutput = NULL,
  FCPeriods = 1,
  MetricSelection = "MAE",
  NumberModelsScore = 1,
  ByDataType = FALSE,
  DebugMode = FALSE
)

Arguments

ModelOutputGrid

Pass along the grid output from ParallelOptimzeArima()

SavePath

NULL returns nothing. Supply path to save model object and xregs if they exist

TimeSeriesPrepareOutput

Output from TimeSeriesPrepare()

FCPeriods

The number of periods ahead to forecast

MetricSelection

The value returned from TimeSeriesPrepare()

NumberModelsScore

The value returned from TimeSeriesPrepare()

ByDataType

Set to TRUE if you want to have models represented from all data sets utilized in training

DebugMode

Set to TRUE to print steps

Value

Time series data sets to pass onto auto modeling functions

See Also

Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildTBATS(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeETS(), OptimizeNNET(), OptimizeTBATS(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoETS(), ParallelAutoNNET(), ParallelAutoTBATS(), ParallelAutoTSLM(), PredictArima(), RL_Performance(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare(), WideTimeSeriesEnsembleForecast()

Examples

Run this code
# NOT RUN {
FinalBuildNNET(
  Output = NULL,
  SavePath = NULL,
  TimeSeriesPrepareOutput = NULL,
  MaxFourierTerms = 0,
  TrainValidateShare = c(0.50,0.50),
  MaxNumberModels = 5,
  MaxRunMinutes = 5,
  ByDataType = FALSE,
  DebugMode = FALSE)
# }

Run the code above in your browser using DataLab