TimeSeriesEnsembleForecast to generate forecasts and ensemble data
StackedTimeSeriesEnsembleForecast(
TS_Models = c("arima", "tbats", "nnet"),
ML_Methods = c("CatBoost", "XGBoost", "H2oGBM", "H2oDRF"),
CalendarFeatures = TRUE,
HolidayFeatures = TRUE,
FourierFeatures = NULL,
Path = "C:/Users/aantico/Documents/Package",
TargetName = "Weekly_Sales",
DateName = "Date",
NTrees = 750,
TaskType = "GPU",
GridTune = FALSE,
FCPeriods = 5,
MaxNumberModels = 5
)
Select which ts model forecasts to ensemble
Select which models to build for the ensemble
TRUE or FALSE
TRUE or FALSE
Full set of fourier features for train and score
The path to the folder where the ts forecasts are stored
"Weekly_Sales"
"Date"
Select the number of trees to utilize in ML models
GPU or CPU
Set to TRUE to grid tune the ML models
Number of periods to forecast
The number of models to try for each ML model
Other Time Series Helper:
FinalBuildArfima()
,
FinalBuildArima()
,
FinalBuildETS()
,
FinalBuildNNET()
,
FinalBuildTBATS()
,
FinalBuildTSLM()
,
GenerateParameterGrids()
,
OptimizeArfima()
,
OptimizeArima()
,
OptimizeETS()
,
OptimizeNNET()
,
OptimizeTBATS()
,
OptimizeTSLM()
,
ParallelAutoARIMA()
,
ParallelAutoArfima()
,
ParallelAutoETS()
,
ParallelAutoNNET()
,
ParallelAutoTBATS()
,
ParallelAutoTSLM()
,
PredictArima()
,
RL_Performance()
,
Regular_Performance()
,
TimeSeriesDataPrepare()
,
WideTimeSeriesEnsembleForecast()