
Last chance! 50% off unlimited learning
Sale ends in
TimeSeriesFill For Completing Time Series Data For Single Series or Time Series by Group
TimeSeriesFill(
data = data,
DateColumnName = "Date",
GroupVariables = c("Store", "Dept"),
TimeUnit = "weeks",
FillType = c("maxmax", "minmax", "maxmin", "minmin"),
MaxMissingPercent = 0.05,
SimpleImpute = FALSE
)
Supply your full series data set here
Supply the name of your date column
Supply the column names of your group variables. E.g. "Group" or c("Group1","Group2")
Choose from "second", "minute", "hour", "day", "week", "month", "quarter", "year"
Choose from maxmax - Fill from the absolute min date to the absolute max date, minmax - Fill from the max date of the min set to the absolute max date, maxmin - Fill from the absolute min date to the min of the max dates, or minmin - Fill from the max date of the min dates to the min date of the max dates
The maximum amount of missing values an individual series can have to remain and be imputed. Otherwise, they are discarded.
Set to TRUE or FALSE. With TRUE numeric cols will fill NAs with a -1 and non-numeric cols with a "0"
Returns a data table with missing time series records filled (currently just zeros)
Other Feature Engineering:
AutoDataPartition()
,
AutoDiffLagN()
,
AutoHierarchicalFourier()
,
AutoInteraction()
,
AutoLagRollStatsScoring()
,
AutoLagRollStats()
,
AutoTransformationCreate()
,
AutoTransformationScore()
,
AutoWord2VecModeler()
,
AutoWord2VecScoring()
,
ContinuousTimeDataGenerator()
,
CreateCalendarVariables()
,
CreateHolidayVariables()
,
DT_GDL_Feature_Engineering()
,
DifferenceDataReverse()
,
DifferenceData()
,
DummifyDT()
,
H2OAutoencoderScoring()
,
H2OAutoencoder()
,
ModelDataPrep()
,
Partial_DT_GDL_Feature_Engineering()
# NOT RUN {
# Pull in data
data <- data <- data.table::fread("https://www.dropbox.com/s/2str3ek4f4cheqi/walmart_train.csv?dl=1")
# Run function
data <- TimeSeriesFill(
data,
DateColumnName = "Date",
GroupVariables = c("Store","Dept"),
TimeUnit = "weeks",
FillType = "maxmax",
SimpleImpute = FALSE)
# }
Run the code above in your browser using DataLab