Execute grid tuning for xgboost
XGBoostGridTuner(
  ModelType = "classification",
  TrainOnFull. = TrainOnFull,
  DebugMode. = DebugMode.,
  TreeMethod. = TreeMethod,
  Trees. = Trees,
  Depth. = max_depth,
  LearningRate. = eta,
  min_child_weight. = min_child_weight,
  subsample. = subsample,
  colsample_bytree. = colsample_bytree,
  LossFunction = LossFunction,
  EvalMetric = eval_metric,
  grid_eval_metric. = grid_eval_metric,
  CostMatrixWeights = CostMatrixWeights,
  TargetColumnName. = TargetColumnName,
  datatrain. = datatrain,
  datavalidate. = datavalidate,
  datatest. = datatest,
  EvalSets. = EvalSets,
  TestTarget. = TestTarget,
  FinalTestTarget. = FinalTestTarget,
  TargetLevels. = TargetLevels,
  MaxRunsWithoutNewWinner = MaxRunsWithoutNewWinner,
  MaxModelsInGrid = MaxModelsInGrid,
  MaxRunMinutes = MaxRunMinutes,
  BaselineComparison. = BaselineComparison,
  SaveModelObjects = SaveModelObjects,
  metadata_path = metadata_path,
  model_path = model_path,
  ModelID = ModelID,
  Verbose. = Verbose,
  NumLevels. = NumLevels
)"classification"
TrainOnFull
DebugMode
TreeMethod
Trees
max_depth
eta
min_child_weight
subsample
colsample_bytree
LossFunction
EvalMetric
MultiClass
CostMatrixWeights
TargetColumnName
datatrain
datavalidate
datatest
EvalSets
TestTarget
FinalTestTarget
TargetLevels
MaxRunsWithoutNewWinner
MaxModelsInGrid
MaxRunMinutes
BaselineComparison
SaveModelObjects
metadata_path
model_path
ModelID
Verbose
NumLevels
MetricPeriods
ClassWeights
Other Reinforcement Learning: 
CatBoostGridTuner(),
RL_Initialize(),
RL_ML_Update(),
RL_Update(),
RPM_Binomial_Bandit()