
Last chance! 50% off unlimited learning
Sale ends in
GCadjustCopy
function to convert
a matrix of count data into absolute copy number estimates, then it segments them,
and reports the copy number of either the input regions or user-defined regions of
interest.
"absoluteCN"(input.windows, input.counts, gc.params, ...) "absoluteCN"(input.windows, input.counts, gc.params, segment.sqrt = TRUE, ..., verbose = TRUE)
data.frame
with (at least) columns chr
,
start
, and end
, or a GRanges object.GCAdjustParams
object, holding parameters
related to mappability and GC content correction of read counts.data.frame
method; the verbose
variable and any
additional parameters to pass to the segment
function. For the
GRanges
method; additional parameters for the segmentation.CopyEstimate
object. If regions
was not provided,
it describes the input windows, otherwise it describes the windows specified by
regions
.
GCadjustCopy
. For details of the segmentation, see segment
documentation.
By default, no weights are used.
## Not run:
# library(BSgenome.Hsapiens.UCSC.hg18)
# library(BSgenome.Hsapiens36bp.UCSC.hg18mappability)
# load("inputsReads.RData")
# windows <- genomeBlocks(Hsapiens, chrs = paste("chr", c(1:22, 'X', 'Y'), sep = ''),
# width = 20000)
# counts <- annotationBlocksCounts(inputsReads, anno = windows, seq.len = 300)
#
# gc.par <- GCAdjustParams(genome = Hsapiens, mappability = Hsapiens36bp,
# min.mappability = 50, n.bins = 10, min.bin.size = 10,
# poly.degree = 4, ploidy = c(2, 4))
# abs.cn <- absoluteCN(input.windows = windows, input.counts = counts, gc.params = gc.par)
# ## End(Not run)
Run the code above in your browser using DataLab